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ABSTRACT
Real-time image-based object tracking from live video is of great
importance for several smart city applications like surveillance,
intelligent traffic management and autonomous driving. Although
recent deep learning systems can achieve satisfactory tracking per-
formance, they incur significant compute overhead, which prevents
them from wide adoption on resource-constrained IoT platforms.
In this demonstration, we present an Edge Computing system for
Real-time object Tracking (ECRT) for resource-constrained devices.
The key feature of our system is that it intelligently partitions
compute-intensive tasks such as inferencing a convolutional neural
network(CNN) into two parts, which are executed locally on an IoT
device and/or on the edge server. Moreover, ECRT can minimize the
power consumption of IoT devices while taking into consideration
the dynamic network environment and user requirement on end to
end delay.
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1 INTRODUCTION
Several approaches have been proposed to reduce the compute
overhead of deep learning algorithms for IoT devices, including
quantization of convolutional layers and fully connected layers
[2, 7]. However, these methods inevitably sacrifice the quality of
solution. On the other hand, several existing systems can offload
compute-intensive tasks like CNNs to the Cloud. However, such
Cloud-based solutions are ill-suited for real-time applications due
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Figure 1: The processing pipeline of ECRT which consists
N+2 possible partition points in a N-layer Neural Network
model.

to the unpredictable communication delays in transmitting live
video streams.

In this demo, we present an ECRT that can partition a deep
learning algorithm for object-tracking dynamically between an
IoT device (e.g., a battery-powered wireless camera) and the edge
server. Different from the existing offloading approach [6], ECRT
intelligently partitions the execution of a CNN into two subsets of
layers. Such a fine-grained runtime partitionmechanism enables the
system to minimize the power consumption of the IoT device while
meeting the application requirement on latency in the presence of
dynamic network bandwidth.

We now use a real-world example to motivate the design of
ECRT. Consider a real-time video surveillance system that consists
of a battery-powered Raspberry Pi 3B+ which can transmit images
captured by its camera wirelessly to an edge server, NVIDIA Jetson
TX2 with 256 CUDA cores[1, 4]. YOLO[5], a widely used object
recognition model which has 24 convolutional layers and 3 full
connect layers, takes nearly 20 seconds to process a single image
frame on Raspberry Pi while taking only about 0.3 seconds on
NVIDIA Jetson TX2. However, it consumes considerable energy
and causes a communication delay when transmitting a live video
stream to the edge. In such a scenario, when the user requires an
end to end delay below 20 seconds, it is thus desirable to partition
YOLO into two subsets of layers to execute on Raspberry Pi and
edge server respectively, which reduces the power consumption of
Raspberry Pi compared with executing YOLO locally or offloading
the video entirely to the edge. In other words, such a fined-grained
partition mechanism can achieve a desirable trade-off between
power consumption and application delay under a wide range of
settings.

2 SYSTEM DESIGN
ECRT contains two components, the IoT device and the edge server.
A CNN-based pipeline consists of preprocessing like image resizing,
CNN model, and post-processing like bounding box. The system
will partition this pipeline into two parts and execute them on the
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IoT device and edge server respectively. The objective is to minimize
power consumption of the IoT device while meeting the latency
required by user. Depending on where the partition point lies, the
resulted compute architecture is one of the following modes:
(i) Local mode: When the IoT device receives data from cameras,

it processes the images and outputs the detected objects.
(ii) Edge mode: When the IoT device receives data from cameras,

it sends the raw data to the edge server, which then executes
the whole CNN model and sends output to the IoT device.

(iii) Collaboration mode: When the IoT device receives data from
cameras, it executes a subset of CNN layers. The edge server
executes the rest CNN layers and sends output to the IoT
device.

Our design explores the trade-off between latency and power
consumption, while accounting for different user requirements on
latency and dynamic network environments. The end to end latency
includes the task execution, data transmission and serialization (the
process of converting data to be transmitted to a stream of bytes).

We now formally formulate the problem of task partitioning
in ECRT. Define i ∈ {0, 1, ...,n + 1}, where i is the ith partition
point in our model and n is the number of layers in an N-layer deep
neural network (DNN). The corresponding ith partition point is
shown in Fig. 1. The serialization and transmission latency mainly
depends on the size of output data at the ith partition point. Define
s(i) as the function of serialization and transmission latency, Qn (i)
as the computing delay on IoT device and Qe (i) as the computing
delay on edge with respect to the partition point i . Hence the total
computing delay is:

c(i) =
i−1∑
k=0

Qn (k) +
n+1∑
k=i

Qe (k) (1)

The end to end delay T (i) including the transmission delay is
T (i) = s(i) + c(i) (2)

From equation 2, if i = 0,T (i) = s(i)+∑n+1
k=0Qe (k), which represents

the latency of edge mode. When i = n+ 1,T (i) = s(i)+∑n+1
k=0Qn (k),

which represents the latency of local mode. Thus, the local and
edge modes can be regarded as the special cases of collaboration
mode.

i = argmin P(i), i ∈ {0, 1, 2, ...n + 1},
s .t . T (i) ≤ ∆,

(3)

P(i) represents the total power cost of the IoT device when the ith
partition point is chosen and ∆ is the end to end delay specified by
the user. In ECRT, P(i) and T (i) are updated in real time.

3 INTERACTIVE DEMONSTRATION
As is shown in Fig. 2, We implement the demo using an Raspberry Pi
3B+ as an IoT device, An NVIDIA Jetson TX2 as the edge server and
an Arduino Uno board for measuring real-time current through the
IoT device [3]. We deploy YOLOv2-Tiny, a real-time object detection
system including a pre-trained 9-layer convolutional network as
the inference model. It divides the input image into a 13 × 13 grid
and predicts a (13,13,125) tensor including the features of the object
class and bounding box [5]. A web GUI is designed for users to set
the bound of delay and to show the system parameters discussed in

Figure 2: ECRT demonstration setup: A USB camera con-
nected to a Rapberry Pi 3B+, An NVIDIA Jetson TX2 as the
edge server, A Pi as an IoT device, An Arduino Uno board
used to measure real-time current through the IoT device
and a monitor that shows online running results of ECRT.

Figure 3: Screenshots of the web GUI of ECRT where the
user can select one of three modes. It also shows the history
records of the tasks as well as their concerning data.

section 2 as well as the real-time object tracking results from three
Raspberry Pis, each runs in local, edge or collaboration mode.

During the demonstration, ECRT will detect and track objects in
front of the camera including moving people in the hall. A monitor
will be used to show the online running results of ECRT via the
web GUI. The detection bounding boxes will be shown when ECRT
tracks different objects. Participants can interact with the demo by
setting different bounds of system delay and power consumption.
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