RT-mDL: Supporting Real-Time Mixed Deep Learning Tasks on
Edge Platforms

Neiwen Ling, Kai Wang', Yuze He" and Guoliang Xing™*, Dagi Xie®
"The Chinese University of Hong Kong, Hong Kong SAR, China
§Edge Cloud Innovation Lab, Huawei Cloud, Shenzhen, China
Email: lingnw@link.cuhk.edu.hk, kai.wang@my.cityu.edu.hk, yzhh@link.cuhk.edu.hk,glxing@cuhk.edu.hk,
xiedaqil@huawei.com

ABSTRACT

Recent years have witnessed an emerging class of real-time applica-
tions, e.g., autonomous driving, in which resource-constrained edge
platforms need to execute a set of real-time mixed Deep Learning
(DL) tasks concurrently. Such an application paradigm poses major
challenges due to the huge compute workload of deep neural net-
work models, diverse performance requirements of different tasks,
and the lack of real-time support from existing DL frameworks.
In this paper, we present RT-mDL, a novel framework to support
mixed real-time DL tasks on edge platform with heterogeneous
CPU and GPU resource. RT-mDL aims to optimize the mixed DL
task execution to meet their diverse real-time/accuracy require-
ments by exploiting unique compute characteristics of DL tasks.
RT-mDL employs a novel storage-bounded model scaling method
to generate a series of model variants, and systematically optimizes
the DL task execution by joint model variants selection and task pri-
ority assignment. To improve the CPU/GPU utilization of mixed DL
tasks, RT-mDL also includes a new priority-based scheduler which
employs a GPU packing mechanism and executes the CPU/GPU
tasks independently. Our implementation on an F1/10 autonomous
driving testbed shows that, RT-mDL can enable multiple concurrent
DL tasks to achieve satisfactory real-time performance in traffic
light detection and sign recognition. Moreover, compared to state-
of-the-art baselines, RT-mDL can reduce deadline missing rate by
40.12% while only sacrificing 1.7% model accuracy.

CCS CONCEPTS

« Computer systems organization — Real-time system archi-
tecture; - Computing methodologies — Neural networks.

KEYWORDS

Real-time Deep Learning, Real-time Scheduling, Edge Computing,
Deep Learning System

*Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SenSys’21, November 15-17, 2021, Coimbra, Portugal

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9097-2/21/11...$15.00
https://doi.org/10.1145/3485730.3485938

ACM Reference Format:

Neiwen Ling?, Kai Wang®, Yuze He" and Guoliang Xing'™*, Daqi XieS. 2021.
RT-mDL: Supporting Real-Time Mixed Deep Learning Tasks on Edge Plat-
forms . In The 19th ACM Conference on Embedded Networked Sensor Systems
(SenSys’21), November 15-17, 2021, Coimbra, Portugal. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3485730.3485938

1 INTRODUCTION

In recent years, Deep Learning (DL) has been increasingly adopted
by real-time applications running on the network edge, includ-
ing autonomous driving [30], smart roadside infrastructure [39],
embedded computer vision [56], etc. Despite the limited compute
resources, edge devices in these applications must support the ex-
ecution of multiple DL tasks concurrently. For example, a smart
lamppost [63] may run different deep neural networks (DNN) for
license plate detection [55], pedestrian/vehicle tracking [12, 31],
and even collision detection and warning for autonomous driving
vehicles [24, 35]. These tasks vary substantially in terms of real-time
requirement, level of model accuracy, and resource demand. We
characterize this emerging application paradigm as mixed real-time
deep learning tasks, in which an edge device must execute multiple
DL tasks with highly diverse real-time/accuracy requirements. For
example, a (semi-)autonomous vehicle must meet stringent perfor-
mance requirements including tight deadline, low deadline missing
rate and high accuracy in detecting imminent on-road collisions,
while processing other tasks such as speech recognition for driver
voice control in a best-effort manner.

Several techniques such as model compression [19, 29, 33, 59, 60]
and neural architecture search [5, 9, 49, 50, 53] have been pro-
posed to achieve timely execution of a single DL task on resource-
constrained edge platforms. However, different from single DL task
execution, mixed DL tasks will lead to resource contention, which
may cause unpredictable response time. The common wisdom to
address this issue in real-time literature is to assign priorities to
different tasks. However, flexible, priority-based real-time schedul-
ing is not well supported by current DL frameworks like PyTorch
[37], TensorFlow [1] and DL accelerators like GPU, NPU [20] on
mobile/edge platforms [54, 62]. Moreover, conventional real-time
scheduling approaches treat each task as a "black box", which does
not exploit the unique characteristics of DL tasks. For instance,
an end-to-end DL task usually includes: 1) DNN model inference
which not only can be executed more efficiently on GPU, but also
has a highly adjustable delay via model compression, and 2) the
pre- and post-processing such as data reading from sensors, result
encoding etc., which usually run more efficiently on CPU. In this
paper, we conduct a comprehensive experimental study that sheds

https://doi.org/10.1145/3485730.3485938
https://doi.org/10.1145/3485730.3485938

SenSys’21, November 15-17, 2021, Coimbra, Portugal

light on the unique characteristics of mixed real-time DL tasks on
edge platforms. First, most mainstream DNN models exhibit signif-
icant compressibility, while the trade-off between model accuracy
and latency over different DNN models is highly diverse. Second,
the real-time performance of mixed DL tasks on edge platforms
is highly dependent on the task scheduling policy, while priority-
based scheduling alone cannot effectively support mixed DL tasks.
In particular, understanding the unique compute characteristics
(e.g., substantial CPU workload and low GPU utilization) of DL task
is critical to improve real-time performance of multiple DL tasks
on edge platforms.

Motivated by these findings, we propose RT-mDL, a new real-
time DL framework that supports running mixed DL tasks with
diverse real-time/accuracy requirements on the edge platforms with
heterogeneous CPU and GPU resource. First, to exploit highly di-
verse compressibility of DNN models, we propose a novel storage-
bounded model scaling algorithm that generates a series of fine-
grained candidate model variants with different compute work-
loads and accuracies under user-specified storage bound. We then
design a new framework that aims to jointly optimize the model
scaling and priority-based task scheduling to meet diverse real-
time/accuracy requirements of mixed DL tasks. RT-mDL also in-
cludes a new priority-based DL task scheduler that uses indepen-
dent CPU/GPU task queues to substantially improve the CPU/GPU
temporal utilization, and a priority-based GPU packing mechanism
to improve the GPU spatial utilization. We implement RT-mDL
on an F1/10 autonomous driving testbed and three mainstream
edge platforms. Our extensive experiments show that RT-mDL can
enable multiple concurrent DL tasks to achieve satisfactory real-
time performance. Moreover, compared to several state-of-the-art
baselines with rule-based scheduling policy, RT-mDL can reduce
deadline missing rate up to 40.12% while only sacrificing minor
DNN model accuracy.

2 RELATED WORK

DNN Model Inference Acceleration. Many model compression
techniques [19, 33, 59, 60] have been proposed to reduce the com-
pute demand of DNN model inference at the price of accuracy
degradation. For example, CNN models such as VGG can trade ac-
curacy for compute workload by pruning or quantization. However,
most previous works only consider the performance of compressing
a single DNN model. Several studies (MCDNN [17], NestDNN [13])
on multi-level on-device DL exploit the trade-off between accuracy
and latency of multiple DNN models. Without jointly considering
the scheduling mechanism and DNN compressibility, these solu-
tions cannot optimize the performance of concurrent DL tasks on
edge platforms with heterogeneous CPU and GPU resource.

Real-time DL Task Scheduling. Several recent efforts are focused
on real-time scheduling for DL tasks. S3DNN [65] is a supervised
scheduling algorithm that improves the GPU utilization of DNN
inference. The work in [6] proposes a deadline-based scheduler for
DNN inference on integrated GPUs. DART [54] employs a pipeline-
based scheduling architecture with data parallelism for real-time
DNN inference requests. However, all these approaches focus on
the real-time scheduling of DNN model inference only, while a

Neiwen Ling, Kai Wang, Yuze He, Guoliang Xing and Dagi Xie.

typical DL task also includes pre-processing (e.g., data reading, de-
coding, feature extraction) and post-processing (e.g., rendering and
encoding) that pose substantial CPU workload [32, 62]. Moreover,
such classical rule-based real-time scheduling policies cannot be
effectively applied to DL tasks on the current edge platforms. This
is because mainstream DL frameworks like PyTorch, TensorFlow
and DL accelerators like GPU, NPU [20] on mobile/edge platform
[54, 62] lack real-time support such as flexible priority assignment.

Concurrent DL inference on Mobile/Edge Platform. Several
recent studies are focused on concurrent DL inference tasks on
mobile/edge platforms [4, 38, 52, 58, 62]. Yang et al. [58] propose to
combine parallelism and pipelining with model sharing to improve
the throughput of multiple DL tasks. While effective for multiple DL
tasks that share the same DNN model, it is not applicable for mixed
DL tasks. Heimdall [62] splits the models into fine-grained units
for scheduling. AsyMo [52] builds an optimal execution plan offline
by partitioning matrix multiplication (MM) and fairly scheduling
tasks among threads. However, these solutions are not designed to
meet diverse real-time/accuracy requirements of mixed DL tasks
on edge platforms with heterogeneous CPU and GPU resources.

3 MOTIVATION

To understand the execution characteristics of mixed DL tasks,
we profile the real-time performance of DL tasks on several GPU-
accelerated edge platforms. The results provide key insights into
the design of RT-mDL. In our profiling experiments, we select 6
DNN models AlexNet [26], VGG11/13/16/19 [44], ResNet18/34 [18],
LeNet [28] that are trained on the CIFAR-10 dataset [25] (for im-
age classification) and MNIST dataset [27] (for handwritten digital
recognition), and conduct extensive profiling experiments on a typ-
ical desktop-class platform (Intel i9 CPU + NVIDIA RTX 2080 GPU),
and two edge platforms (NVIDIA Jetson TX2 and AGX Xavier).

3.1 DL Model Compressibility

As shown in Fig. 1, a DNN model usually consists of various layers
such as convolutional layer and fully-connected layer. It can be com-
pressed by reducing the width of each layer (i.e., the filter/channel
number of each layer), thereby trading accuracy for lower latency.

Original Model Compressed Model

ﬁ'rs

Less Filters/Channels

Convl Model

Conv2 Scaling
—_—
Conv3 —
256*3*3

Conv4 "
Filters/Channels
e Channel Number * Kernel
Size * Kernel Size

Figure 1: Process of DNN Scaling.

Fig. 2(a) shows the latency of the DNN models under different
levels of accuracy, and Fig. 2(b) shows the accuracy for different
model sizes. Only the results on Xavier are shown here due to
space limitation, since the results on TX2 and Desktop are similar.
First, it can be seen that almost all the DNN models exhibit a wide
region of latency-accuracy trade-off. Taking VGG11 as an example,
accuracy loss of one percent (from 81.64% to 80.34%) leads up to a
27.65% decrease of latency (from 10.23ms to 7.40ms) and a 38.54%
decrease of storage (from 35.29MB to 21.69MB). Second, the model
compressibility is highly diverse across different DNN models. Some
DNN models show significantly better accuracy-latency trade-off

RT-mDL: Supporting Real-Time Mixed Deep Learning Tasks on Edge Platforms

AlexNet VGG16 85
-6- VGG11 VGG19 A ~9
20 o
VGG13 LeNet
—_ eNel —~ 80 f
M) X
£ N [)
Es ;
a o) 75
$10 R e
% 3 370
- o
s < AlexNet VGG16
65 -~ VGG11 VGG19
. VGG13 LeNet

60 65 70 75 80 85
Accuracy (%)

(a) Latency v.s. Accuracy

0 25 §Eora795e 6R}BB)175 200
(b) Accuracy v.s. Model Size

Figure 2: Latency-accuracy trade-off for different DNN models on Xavier.
(Results on TX2 and Desktop are similar to Xavier)

than other DNN models. For example, with the same accuracy
loss of 2%, the execution time of VGG19 on Xavier platform is
reduced by 6.99ms, which is 10.4 times that of AlexNet (0.67ms). In
summary, there exists significant trade-off between latency
and accuracy, which is also highly diverse across different
DNN models.

3.2 Real-Time Scheduling for Mixed DL Tasks

Real-world DL applications usually require periodically processing
input data in real-time. For example, for a real-time object detection
task, images may be captured from the camera at 20fps, which
triggers an object detection job every 50ms, and each job is expected
to complete before the generation of the next image (i.e., within 50
ms). We focus on periodic tasks where each instance of execution is
referred to as a job. The expected completion time of a job is called
task deadline.

Model scaling [10, 21, 50] is an effective approach to achieve the
timely execution of a single DL task under resource constraints.
However, mixed DL tasks will lead to the resource contention,
and the resultant blocking time, defined as the waiting time for the
resource occupied by other tasks, may cause unpredictable response
time, i.e., the delay between job release and completion.

Under current DL frameworks, concurrently executed DL tasks
will occupy the GPU at the same time, and the GPU driver (i.e.,
CUDA) will schedule the operations (i.e., matrix multiplication in
model inference) in a round-robin manner. As a result, a more
urgent task with shorter deadline can easily miss its deadline due
to blocking of less urgent tasks with longer deadlines. The common
wisdom to address this issue in real-time literature is to introduce
priorities to different tasks. We now show the impact of priority-
based scheduling policies on the real-time performance of mixed
DL tasks. Since the native DL frameworks such as PyTorch and
TensorFlow only provide a two-level priority assignment [54], we
developed a naive priority-based scheduler by using an independent
thread for each DL task, and adopting a priority queue to control
their execution. We choose to run 4 mixed DL tasks simultaneously
under all possible settings of task priorities (totally 24). The DL task
set used here includes two AlexNet tasks and two VGG11 tasks.
The deadlines of the tasks are set to achieve a 30fps (i.e., deadline
is 33.3ms) processing of images on Xavier, which is in line with
computer vision applications, and they are proportionally adjusted
to maintain the same load for Desktop and TX2 platforms.

The best-case, medium and worst-case performance of each task
are shown in Fig. 3. We observe that on TX2 the deadline missing
rate of AlexNet-2 is 98.19% in the worst case, while reduced to

SenSys’21, November 15-17, 2021, Coimbra, Portugal

[0 AlexNet-1 [VGG-1
[AlexNet-2 B VGG-2

o .o o
i

80 ' o

:

Deadline Missing Rate(%)

Figure 3: Variation of deadline misEsdiz:gP Ila‘::remfor mixed DL tasks under dif-
ferent task priority assignments.

20.44% in the best case. Moreover, Fig. 3 shows that the worst
deadline missing rates among all tasks under all possible priority
assignments are 81.39% on Desktop, 99.33% on Xavier and 72.40%
on TX2. In other words, none of the scheduling strategies can
achieve low deadline missing rates for all tasks. This is because the
tasks with low priorities can be frequently blocked by the tasks with
higher priorities, and hence may not be executed in time. This result
shows that priority-based scheduling alone may not achieve
satisfactory performance for mixed real-time DL tasks due
to significant resource contention.

3.3 DL Task CPU/GPU Utilization

Neural
Preproces- Network

. Postproce-
singon Inference on

: cPU GPU ssing on CPU
DL Task 0 :‘ I I J, [r——
Job O Job num_0

DL Task i T ‘l'

. Job0 Job num_i
Time —————————————- - - - — === === === >

Job Job
Release Deadline GPU cPU

—

executed on GPU, and the pre-processing and post-processing are executed
on CPU.

o
o

-

AlexNet VGG19
VGG11 ResNet18
VGG13 ResNet34

o
kS

o
w

)

CPU / GPU Execution Time Ratio

GPU Resource Utilization (%)

AlexNet VGG19
o1 so| —#— VGG11 ResNet18
VGG13 ResNet34
o. =
Desktop Xavier TX2 00 01 02 03 04 05 06 07 08

Edge Platform Model Compression Level
Figure 5: Execution time ratio be- Figure 6: GPU Spatial Utilization of
tween CPU and GPU on different DNN model under different levels
platforms. of model compression (on Xavier).

As shown in Fig. 4, the execution of an end-to-end DL task
typically starts with the pre-processing, such as decoding and image
resizing, then followed by the neural network computation, and
finally the post-processing such as rendering and encoding. For
the edge platforms with heterogeneous CPU and GPU resource,
the common practice [32, 57, 62] is to execute the neural network
computation on GPU while executing pre-processing and post-
processing on CPU. Fig. 5 shows that the execution time for pre-
processing and post-processing accounts for a considerable portion
in task delay, e.g., about 30% of the DNN model execution time for

SenSys’21, November 15-17, 2021, Coimbra, Portugal

AlexNet on Xavier. This will lead to a temporal underutilization of
CPU/GPU resource, because when a DL task is occupying CPU, the
GPU is left idle even when there are other lower-priority DL tasks in
the task queue. Moreover, Fig. 6 shows that GPU spatial utilization
rate highly depends on the type of DNN model, while it also varies
slightly with the model compression rates. More importantly, as
is evident in the figure, some DNN models such as AlexNet and
VGG11 cannot fully occupy the GPU, resulting in a substantial
waste (14.54%-36.25%) of GPU resources. This is because a single
DNN inference cannot fully utilize all the GPU computing cores
(e.g., 512 cores on Xavier).

These results show that GPU is often not efficiently utilized,
and CPU execution time should not be neglected when running
mixed DL tasks on the edge. A key observation here is that, an effi-
cient scheduler should take account of such unique compute
characteristics of DL tasks in order to improve CPU/GPU uti-
lization (and hence achieve better real-time inference per-
formance) for multiple DL tasks.

4 OVERVIEW OF RT-MDL
4.1 Key Idea

This work considers the problem of supporting mixed real-time DL
tasks in which an edge device executes multiple different DNNs
with highly diverse real-time/accuracy requirements. Our key ob-
servation in Section 3 is that we need to carefully consider the task
scheduling policies as well as the unique compute characteristics of
DL tasks, including significant but diverse latency-accuracy trade-
offs of different DL models, non-negligible CPU execution time, and
inefficient spatial and temporal GPU utilization. Motivated by these
findings, the key idea of RT-mDL is to jointly optimize model scaling
and priority-based task scheduling. Specifically, RT-mDL employs a
novel storage-bounded model scaling algorithm to generate a series
of model variants, and systematically optimizes the DL execution
by finding the efficient combination of task priorities and scaling
levels of mixed DL tasks. We propose a new formulation that aims
to find the optimal execution strategy that minimizes the accuracy
loss for all DL tasks under the given real-time requirements and
storage bound. To exploit unique compute characteristics of DL
tasks, RT-mDL also includes a new priority-based DL task scheduler
which divides a DL task into CPU and GPU subtasks and schedule
them using independent CPU/GPU task queues, which substan-
tially improves the GPU and CPU temporal utilization. Moreover,
to improve spatial utilization of GPU, the RT-mDL scheduler adopts
a new GPU packing mechanism to enable parallel execution of DL
inferences with the guarantee of priority.

4.2 Problem Definition

Specifically, we aim to optimize the execution strategy s which
represents the model scaling strategy and priority assignment of
all DL tasks. The execution strategy s for a task set with n DL
tasks is parameterized by a vector (ki, ..., ki, ..., kn, b1, ..., hiy ..., An),
where task 7; runs its k;-th model variant (scaled model) I:Ii,k and is
scheduled with priority level h;, h; € {1,2,....,n}. k; € {1,2,..,K;}
where Kj is the maximum number of model variants for DL task ;.
The optimization problem is to find a strategy s that minimizes the
sum of normalized accuracy loss LOSS(s) (referred to as accuracy

Neiwen Ling, Kai Wang, Yuze He, Guoliang Xing and Dagi Xie.

loss ratio) for all tasks, while meeting the real-time requirement of
each task and an upper bound of storage for all the model variants,
which is formulated below.

. LOSS; (s

min LOSS(s) = X; ACC;’L’Z))

s.t. MIS;(s) < i, X; 2k Storage(N;y) < Storage
where for each DL task 7;, LOSS; (s) indicates the model accuracy
loss under execution strategy s, compared to the original model
accuracy ACC"® without model scaling. We use deadline missing
rate to quantify how well the task real-time requirement (i.e., task
deadline) is met. The deadline missing rate MIS;(s) here denotes
the percentage of overtime jobs among all execution jobs of a DL
task 7;. Lastly, {; indicates the real-time requirement of task z;,
which is the upper bound of the deadline missing rate for task ;.
For example, {; = 5% means that at least 95 percent of the jobs
should be completed before its deadline. In other words, this DL
task has a 95% probability of finishing in time.

We now use a real-world example to explain the above problem
formulation. A (semi-)autonomous driving vehicle [61] is usually
equipped with several on-board cameras and Lidars to detect the
traffic lights/signs as well as microphones for driver voice control.
Each task is periodically released according to the sampling rate of
the sensor. The DL tasks for traffic light detection typically have
tight deadlines (e.g., 20 ms for a frame rate of 50 fps) as well as
extremely low probability of deadline missing (e.g., <1%) due to
the criticality of the result. On the other hand, the speech recog-
nition tasks for voice control can tolerate more relaxed deadlines
and missing probabilities. A key challenge for supporting such a
mixed set of real-time tasks concurrently is the compute resource
contention on the vehicle’s embedded platforms. Our problem for-
mulation in Eq. (1) aims to maximize the overall accuracy of all the
DL tasks while meeting their real-time requirements. To tackle the
challenge of resource contention, our key idea is to find a solution
that jointly optimizes the scaling levels of all DL tasks as well as
the task priorities.

4.3 System Architecture

To meet diverse real-time/accuracy requirements of mixed DL tasks
as formulated in Eq. (1), we propose a new system RT-mDL that
integrates model scaling and real-time scheduling to provide flex-
ible execution strategies for mixed real-time DL task execution
on edge platform with heterogeneous CPU and GPU resource. A
bird-eye view of RT-mDL is shown in Fig. 7. RT-mDL has three
major components, i.e., storage-bounded multi-level model scaling,
priority-based DL task scheduler and execution strategy optimizer,
which collaborate to optimize the execution strategy of DL tasks.

To support flexible model scaling for mixed DL tasks, RT-mDL
includes a component called storage-bounded multi-level model scal-
ing, which compresses the DNN models of DL tasks in depth/width
dimension to generate a series of model variants with different
levels of accuracy and latency. To ensure that all model variants can
be stored on the edge platform, we propose a new weight sharing
mechanism in multi-level model scaling to limit the total used stor-
age of generated model variants up to a user-specified bound, e.g.,
100MB. We note that some models cannot be efficiently compressed
[22, 43]. However, they still benefit from RT-mDL when being exe-
cuted together with compressible models due to optimized resource
usage.

RT-mDL: Supporting Real-Time Mixed Deep Learning Tasks on Edge Platforms

53 Task Configuration ‘

SenSys’21, November 15-17, 2021, Coimbra, Portugal

Execution Strategy Optimization

‘ Basic Model i ‘ (task deadline, missing L n 1 - 0 ‘
DL Task i @ —_— : . rate bound) Missing Rate Prediction Current TaskPriority O
| Deadine | = @ ® ie 3 Outimal el variant -t . \
: T8 G 3
[[; w| | moEA optimization | e Cloud
DLTask DL Task 0 DLTask 1 DL Task n ‘
l Basic Model for each task 403 Set‘
I Updated Strategy / Model ;h ‘
. o Variants Set for each task
Storage-bounded Multi-level Model Scaling } '
Basic Model 1 Basic Model 2 Saeiciipde Model Variants Set - - ‘
Width/Depth | . vodel =T I ¥ configwation | | Mixed DL Task Execution 4 ‘
) LHEeer] == : ¢
Scaling $ - ___= s = Sub-Task Execution Mode H GPU Task Queue Missing Rate Q
. | Storage-bounded | = 3 ‘
Weight %\ Model VariantsSet 1 Model VariantsSet 2+ Model VaiantsSetn | Model ’: CPU Task Queue ~|v - Y
il e - . -
Sharing ‘@ .2 =3 ; | Variants Set T ’[lll | GPU Task Packing ‘ sensor |
1_ s | T Data
————————————————— L i \
‘ [cpu | [eu | |

Figure 7: System Architecture of RT-mDL: Storage-bounded multi-level model scaling generates model variants for each DL task, priority-based DL task sched-
uler supports flexible real-time scheduling of mixed DL task, execution strategy optimizer searches for the optimal execution strategy of model variant selection

and priority assignment.

The optimization of mixed DL task execution is an iterative pro-
cess, which aims to find the best execution strategy which consists
of model variant selection and priority assignment. Specifically, we
adopt a new Multi-Objective Evolutionary Algorithm (MOEA) to
solve the optimization problem defined in Eq. (1). A key challenge
here is to estimate the response time (i.e., execution time from
task release to completion) of each DL task so that we can predict
the deadline missing rate. Existing approaches for response time
estimation are too pessimistic [47], since they focus on the worst
case execution time of each task. Hence, we adopt a proxy model to
estimate deadline missing rate from runtime measurements on the
edge platform. The estimated real-time performance from the proxy
model will be used to find the better execution strategy during the
iterative optimization process. Our experimental results show that
our optimizer can be implemented efficiently on mainstream edge
platforms, such as NVIDIA Jetson TX2 and AGX Xavier!. If the edge
platform has extremely limited resource, the execution strategy op-
timizer can also be deployed on the cloud. In such a case, only the
execution strategies and deadline missing rate measurements need
to be transmitted between the edge and the cloud, which incurs
insignificant communication overhead.

DL tasks are executed according to the found execution strategy,
which specifies the chosen model variant and execution priority for
each DL task. To support flexible real-time scheduling of mixed DL
tasks, we design a priority-based DL task scheduler. It constructs
independent priority-based CPU/GPU task queues, which achieves
efficient utilization of heterogeneous CPU and GPU resource. We
also design a priority-based GPU task packing algorithm to im-
prove the spatial utilization of concurrent GPU sub-task execution,
through enabling parallel execution of DNN inferences under the
guarantee of priority. The integration of CPU/GPU sub-task model
and priority-based GPU task packing can effectively improve the
GPU utilization. In temporal dimension, when the CPU is occupied
by a DL task, GPU interferences from other DL tasks can be sched-
uled on GPU. In spatial dimension, GPU cores can be utilized by
multiple DNN inferences at the same time.

!In the remainder of this paper, we assume the optimizer is implemented on the edge
device, unless otherwise indicated.

5 DESIGN OF RT-MDL
5.1 Storage-bounded Multi-level Model Scaling

To achieve flexible accuracy-latency trade-offs among multiple DL
tasks (Section 5.2), in this section, we design a Storage-bounded
Multi-level Model Scaling algorithm, where we carefully scale the
architecture of the basic DNN model of each DL task to create a
series of DNN model variants with different workloads. In order
to ensure that all model variants can be stored on the resource-
constrained edge platform for optimization at run-time, we also
propose a fine-grained weight sharing mechanism to bound the
total used storage of generated model variants.

In our design, to achieve fine-grained latency-accuracy trade-off,
we adopt the mainstream trade-off approach, model architecture
scaling, to generate multi-level model variants, although other ap-
proaches such as quantization, knowledge distillation are also ap-
plicable. The problem of generating model variants with storage
bound is formulated in Eq. (2), in which the objective is to minimize
the accuracy loss of the model variants under storage constraint
while their compute workloads decrease in an equal gradient, which
leads to different levels of execution latency.

Vik min L(Wig, Ni,k)
s.t. FLOPS(Njk-1) — FLOPS(Nj) > £)
5., Storage(UE, Wi) < Storage

L(+) is the loss function of the k-th model variant Z(Ii,k with model
parameters ‘W ;. for DL task 7;. The compute workload of a model
variant is represented by FLOPS(-) and the scaling gradient ¢ in-
dicates the maximum scaling granularity. Storage(-) denotes the
storage space occupied by the generated model variants, including
the basic DL model]\71-,0,

Width and Depth Scaling. We generate multiple candidate model
variants for each DL task via the model scaling approach. The final
model variants selected for each task will be determined in the
weight sharing process described later in this section. Multi-level
model scaling can be conducted either by width scaling or depth
scaling. Width scaling adjusts the width of DNN models, and we use
filter pruning technique here to reduce the channels of each DNN
layer. We iteratively prune a subset of filters from the basic DNN

SenSys’21, November 15-17, 2021, Coimbra, Portugal

Width Scaling Width Scaling Width Scaling
Level 1 Level 2 Level K

com2 - ﬁﬁ: E%AE ﬁ]&ﬁ:
256*5¢5 220*5%5 128° 5% 5

28
Private ™3 Filters/Channels

]
L
FC [—
4 256033 g3

120*3*3
Figure 8: Model scaling with partial wight sharing. The same type of
weights are represented by the same pattern.

Original Model
{7} shared
Weights

Convl

model Ni,() for DL task 7;, and hence generate a series of candidate

model variants {I\Nfi,l, 1\7,-52, ey I\NI,-E Komar) With a decreasing gradient
£

;. of compute workload (i.e., FLOPS). For depth scaling, we first

identify the repeating units of the DNN model architecture, where
one unit can be a single layer or combined multiple layers such
as the block in MobileNetV3 or the inception in GoogLeNet. Then,
similar to width scaling, we iteratively remove the units from the
basic model and hence generate a series of candidate model variants
with different scaled levels.

Multi-level model scaling can also be achieved by scaling DNN
architecture in both width and depth dimensions simultaneously.
However, such an approach will lead to an explosion of the candi-
date model variants number to O(K?,,,.) for each DL task. Hence,
in this work, we only consider the model scaling in one dimension.
According to the recent studies [51], smaller model size does not
always correspond to a reduced inference time due to the possibility
of increased memory access. This can be avoided by filtering out
abnormal model variants based on a one-time profiling of generated
model variants on the target edge platform.

Weight Sharing and Retraining. These model variants incur
significant storage overhead on the edge platform, since most DL
models contain millions of neurons and the model weights are in
the order of 100MB. For example, it costs a total of 605.6MB to store
all the model variants of VGG19 with 9-level scaling (5% FLOPS
gradient between adjacent model variants). The total storage cost
can grow quickly when the variants of multiple DNN models need
to be stored locally. To address the storage capacity limitation while
maintaining the descent gradient of the selected model variants, we
design a fine-grained weight-sharing mechanism in the following.
As shown in Fig. 8, under weight sharing mechanism, model
weights W, . of the k-th model variant consist of its private weights
W; k and shared weights W;*, which are shared among all the model
variants of DL task r;. Shared weights and private weights are
separated based on a layer granularity as shown in Eq. (3).
Wi =D W =St W ®
Jshare is the number of layers that share weights among all model
variants, and K is the number of extracted model variants from all
the Kimax generated model variants (extracted in the equal interval).
The total storage usage of task 7; can be rewritten as in Eq. (4),
which reduces the storage usage of shared layers among model
variants.
Storage(Ulkio Wi k) = Storage(W;") + ZII::O Storage(W; i) (4)
Given the storage bound Storagey,,,,,4> We search for Jpqr and K
to satisfy Eq. (2). Considering that a larger K value corresponds
to a finer grained model variant selection, we start from Kpgx
and calculate the storage of all sharing mechanisms. If there exist
solutions that meet the condition, we adopt the sharing scheme
closest to the storage bound. If not, we increase the extraction
interval by one and repeat. If there exist two types of models, the

Neiwen Ling, Kai Wang, Yuze He, Guoliang Xing and Dagi Xie.

complexity of the whole search process is O(Kmax * Jalll *]5”),
where J,;; is the maximum number of shared layers for each model
type. As an example, the total search time for VGG11 and AlexNet
under the storage bound of 2500MB is about 176s.

To reduce the accuracy loss caused by model scaling, a retraining
process is applied through global training for shared weights W;*
and local training for private weights W; . For each loop of global
training, we fix the private model weights of each model variant,
and jointly train the shared weights by updating the weights with
the loss accumulation of all the model variants. In local training, we
fix the shared wights and train the private weights of each model
independently.

5.2 Joint Model Variant Selection and Task
Scheduling

As discussed in Section 4.3, to optimize the mixed DL task exe-
cution on edge platforms, we adopt Multi-Objective Evolutionary
Algorithm (MOEA) to search for an optimal execution strategy
for selecting DNN model variants and scheduling DL tasks in an
iterative process of optimization.

There are several challenges to find the strategy s that satisfies
the task real-time requirements and minimizes the total accuracy
loss ratios LOSS™ " (s), as defined in Eq. (1). First, the deadline
missing rate MIS;(s) for a given strategy s does not have closed-
form expressions. It can be calculated based on the response time of
the task execution. However, existing approaches for response time
analysis are too pessimistic, since they aim to bound the worst case
execution time of each task, which is often significantly longer than
its actual execution time. Moreover, the problem defined in Eq. (1)
has a large solution space since each execution strategy consists of
decisions on both model variant selection and task priorities. For K
model variants per task and n tasks, the solution space is O(n!K™).
The effective profiling time for each strategy is in the order of
minutes, which is prohibitively expensive to search exhaustively.

We tackle these challenges by adopting multi-objective opti-
mization and performance approximation techniques. We employ
a proxy model £(-) = [f1(-), ...,fn(-)]T to predict the deadline miss-
ing rate of each task for a given execution strategy, and transform
the problem in Eq. (1) into a multi-objective optimization prob-
lem in Eq. (5), where each constraint in Eq. (1) corresponds to an
optimization objective f;(s), i.e., fi(s) = MIS;(s).

min [fi(8), .., fu(s),LOSS™ ()] (5)

Afterwards, we optimize the execution strategy s in an iterative
optimization process with Multi-Objective Evolutionary Algorithm
(MOEA), a widely adopted effective optimization algorithm [2, 23].
For each iteration, we will use MOEA to search for the optimal
strategies, and the real-time performance of new strategies gener-
ated during MOEA process are predicted by the proxy model. The
searched current optimal strategies will be used for actual real-time
performance measurement, and the measurement results will then
be used by the proxy model for further training. Such an iterative
optimization approach allows RT-mDL to measure the real-time
performance of multiple different execution strategies and then
progressively optimize the selection of execution strategies.

Proxy Model for Missing Rate Prediction. We train a function
£() = [A()s o fu(D]T where each f;(-) is a separate proxy model

RT-mDL: Supporting Real-Time Mixed Deep Learning Tasks on Edge Platforms

175 VGG11+AlexNet-Xavier
£ 5o VGG11+AlexNet-TX2
5., VGG11+ResNet-Xavier
517 VGG16+AlexNet-Xavier
c 100
S L
ﬁ 75]
il i 1
g
o By |
0.(L
1 2 3 4 5 6
Task ID

Figure 9: Performance of proxy model for predicting task deadline missing
rates.

that predicts the deadline missing rate of task z; for a given strategy
s. The proxy model is based on Random Forests (RF) approach [23],
although other methods such as Gaussian Process Regression (GPR)
are also applicable. Given a set S of strategies whose actual perfor-
mance are measured on the edge platform, the training process can
be regarded as minimizing the square error (MSE) with respect to

SELS- tmin | (), i ()17 = [MISy (5), s MIS (5) 17 ©

We demonstrate the effectiveness of the proxy model f(-) for
predicting deadline missing rates of DL tasks under three DL task
sets: VGG11 + AlexNet, VGG11 + ResNet, VGG16 + AlexNet on TX2
and Xavier platforms. We measure the error between the predicted
and the actual deadline missing rates for the strategies whose actual
performance are measured on the edge platform during the MOEA
optimization process. Fig. 9 shows that for all DL task sets, the
prediction error fluctuates below 10%, and the proxy model achieves
considerable prediction performance.

MOEA-based Strategy Optimization. The advantage of apply-
ing MOEA-based strategy optimization is that infeasible or low-
performance strategies can be efficiently eliminated during the
search process in MOEA. For example, we add the following two
rules for eliminating candidate strategies and reducing search space.
First, for each new strategy s, the estimated deadline missing rate
fi(s) for task 7; will be set to zero if it satisfies the real-time re-
quirement in Eq. (1). This will make strategy s outperform more
new strategies during optimization, forcing the found strategies
to excel in other dimensions, e.g., deadline missing rates of other
tasks. Second, when two strategies are compared, we neglect the
dimension of accuracy loss in Eq. (5). This will also make strategy s
outperform more candidate strategies in terms of missing rate and
for the same reason the found strategies are more likely to satisfy
real-time requirements. Besides the rules introduced above, we also
adopt specific cross-over and mutation methods for model variant
selection and priority assignment, and an accuracy-based sorting
algorithm to select the output strategies, which are omitted due to
space limitation. As a result, the MOEA algorithm can efficiently
produce high-performance strategies with high probability.

5.3 Priority-based DL Task Scheduler

In this section, we will introduce our priority-based DL task sched-
uler for edge platforms. Our design allows the existing DL frame-
works (e.g., PyTorch, TensorFlow) and DL accelerators (e.g., GPU,
NPU) to support mixed real-time DL task execution on mobile/edge
platforms. Our profiling results in Section 3 show that supporting
efficient mixed real-time DL tasks on edge platform should not only
employ priority assignment but also improve CPU/GPU utilization
by considering the unique compute characteristics of DL tasks. Mo-
tivated by these findings, we design a new priority-based scheduler

SenSys’21, November 15-17, 2021, Coimbra, Portugal

that includes independent CPU/GPU task queues and GPU-packing
mechanism, which has three major key advantages: i) Support
flexible priority assignment; ii) Separate the CPU/GPU sub-tasks,
which enables more efficient temporal utilization of CPU/GPU re-
source; iii) Enable GPU packing of multiple DNN inferences, which
increases the GPU spatial utilization.

DL Task Model. As discussed in Section 3.3, a DL task consists of
CPU execution part for pre-/post-processing like decoding and GPU
execution part for DNN model inference. Therefore, each DL task z;
(i € {1,2,...,n}) comprises three sequential sub-tasks C; 1, G;, Ci 2
where C; 4 denotes the execution time of the g-th CPU sub-task
(pre-processing for C; 1 and post-processing for C; 2), while G; is the
execution time of GPU sub-task. As we introduced in Section 3.2,
real-world DL applications usually require periodically processing
input data in real-time. Therefore, in our DL task model, each DL
task 7; is a periodic task with period T; and a user-defined relative
deadline D;, where D; can equal to T;. Each task 7; is thus defined
by an array (Cy 1, G, Ci2, Di, Ty).

Priority-based CPU-GPU Sub-Task Scheduling. When a DL
task starts execution, our scheduler will periodically release each
job of this DL task according to its task period, as shown in Fig. 4.
Job here refers to a unit of DL task execution, hence it has the same
priority as its corresponding task. If a DL job is not finished in
time, which means its response time exceeds the task deadline, our
scheduler will not terminate the delayed DL job but wait for it to
complete before releasing the next job.

treat each DL task divide each DL task into . i .o 1oskof

as a single task CPU/GPU sub-task DLTaskl = DL Task2
util |
v { g 7 GPU sub-Task of [[[[[| 6P Sub-Task of
CPU L - DL Taskl DL Task2
‘ DL Task 1 PL Task V7 e
4{%—» Time wirt o
Task Deadli]| oovtoron Task Deadline
DDLformx asMi;:d|ne GPU Task 2 .

Task2 Time

Figure 10: Improve the efficiency of priority-based scheduling for mixed DL
tasks by dividing a DL task into CPU and GPU subtasks and schedule them
using independent CPU/GPU task queues.

To achieve efficient GPU/CPU resource utilization, as shown in
Fig. 10, our scheduler divides the DL task into the CPU sub-task
and the GPU sub-task by Mutex, and puts these sub-tasks into
independent priority-based CPU and GPU task queues. Each sub-
task will inherit the priority of the original task, and our scheduler
will release CPU/GPU resource to the sub-task at the head of the
priority queue. In this way, the CPU sub-task from low-priority
task can be executed when the high-priority task finishes its CPU
sub-task and starts its GPU sub-task, thus achieving a more efficient
temproal utilization of CPU/GPU resource.

To schedule CPU sub-tasks, we create an independent CPU
thread for each DL task, and the scheduler will release the CPU
resource to each thread according to the task priority. We choose
not to run DL task in the CPU process manner, because the pro-
cess creation will put the GPU sub-tasks (DNN model inference)
from different DL tasks into different GPU contexts?. Different GPU
contexts cannot be executed on the mobile GPU in parallel, which
will lead to inefficient use of the GPU. The scheduler also supports
multicore CPU execution through a global scheduling mechanism.

2A GPU CUDA context is analogous to a CPU process [36]

9 CPU Sub~Task of

SenSys’21, November 15-17, 2021, Coimbra, Portugal

Specifically, a global CPU task queue is created for all DL tasks even
when there exist multiple CPU cores. Once a CPU core becomes
idle, the scheduler will release resources to the sub-task at the head
of the queue.

To schedule GPU sub-tasks, we first create a similar priority
queue using Mutex. We note that the GPU tasks here also include
some CPU operations, such as GPU kernel launching. Therefore,
the resource required by the GPU sub-task can also be controlled
by our scheduler.

GPU Task Packing. In order to improve the GPU spatial utilization
for model inference, the scheduler also includes a priority-guided
GPU packing mechanism, which enables parallel execution of DL
tasks under the guarantee of priority. The reason we consider pack-
ing the GPU sub-tasks instead of CPU sub-tasks is twofold. First,
GPU has more parallel execution units (Arithmetic Logic Unit) than
CPU. Second, our profiling results in Section 3.3 show that model
inference cannot fully utilize all the execution units on GPU. To
achieve GPU task packing, the scheduler will employ two GPU
streams > (i.e., High-priority Stream (HS) and Low-priority Stream
(LS)) for DNN inference (GPU sub-task) in each DL task. The two-
level priority stream is supported by most GPU-accelerated edge
platforms (e.g., NVIDIA Jetson TX2 and Jetson AGX Xavier). After
the GPU sub-task at the head of priority queue receives the start-
ing signal, it will be pushed into the stream of high priority. The
scheduler then search for another sub-task that can be executed
in parallel with the current GPU sub-task and put it into the low-
priority stream for execution. In this way, GPU spatial utilization
can be improved efficiently. The specific packing rule in our sched-
uler is: (i) when HS is empty, the task with the highest priority in
GPU task queue is submitted to HS only if it has higher priority
than the current task processed in LS; (ii) when LS is empty, the
packing algorithm finds task 7y (G) via looking ahead in the GPU
task queue until the packing condition in Eq. (7) holds for task
77 (G) and the other task 7;(G) in HS. The packing condition is

formulated as follows,
Priority;, < Priority;, Utilizationy + Utilization; < 6 (7)

where Priority; is the configured priority level and Utilization; is
the spatial-dimension GPU utilization rate of the GPU sub-task
7;(G), and 0 is a controllable threshold for the maximum allowed
GPU spatial utilization rate. Our experiments show that the GPU
packing algorithm is effective in increasing GPU spatial utilization.
In particular, it can reduce the average per-task response time on
GPU by 34.06% (15.39ms v.s. 23.34ms) when running 6 DL tasks on
Xavier. We omit the details due to space limit.

6 EVALUATION

We first present an end-to-end evaluation on an F1/10 [8] au-
tonomous driving testbed which demonstrates that RT-mDL achieves
significantly better performance than traditional execution strate-
gies for 4 mixed real-time DL tasks. We then evaluate the perfor-
mance of different components of RT-mDL in Section 6.3 - 6.5.

6.1 Implementation and Experiment Setup

We use NVIDIA Jetson TX2, Nano and AGX Xavier as edge plat-
forms in our experiments (hardware configurations are shown in

3GPU tasks can be executed in parallel under the same level of streams

Neiwen Ling, Kai Wang, Yuze He, Guoliang Xing and Dagi Xie.

Table 1). The Desktop is used for model variants generation, and
Laptop is used for strategy optimization in the case study. The de-
tails of DL tasks evaluated in our experiments are shown in Table 2.

We choose PyTorch as the DL framework for model scaling, and
use LibTorch (C++ frontend of PyTorch) with CUDA library for
DL task inference on the edge. Each DL task has two versions of
implementation: Python3 version is used for model variant gen-
eration and a C++11 version is used for actual execution on the
target edge platform. This is because Python lacks support for
thread scheduling due to its Global Interpreter Lock (GIL). Hence,
we generate model variants and train models via Python, and the
generated models are converted to Torch Script format to work
with C++ code (Libtorch). The models can also be converted to
ONNX format for C++ frontend under other DL frameworks like
TensorFlow, MXNet and MindSpore. CPU affinity is fixed for DL
task execution, and the working frequency of CPU and GPU on the
edge is fixed to the maximum value. The GPU utilization of each
DL task is measured by accessing the system log file. For baselines
with rule-based scheduling policies we used in the evaluation is
achieved through our priority-based scheduler.

Table 1: Platforms used in evaluation experiments.

Platform GPU CPU Memory Storage
Xavier 512-core Volta 8-core ARMv8.2 16GB 32GB
TX2 256-core Pascal 2-core ARM Denver + 4-core ARM A57 8GB 32GB
Nano 128-core Maxwell 4-core ARM A57 4GB microSD
Desktop RTX2080 8-core Intel 19-9900K 32GB 5TB
Laptop Intel Iris Plus 4-core Intel 16GB 500GB

Table 2: DL tasks used in evaluation experiments.

DL Task Type Dataset DNN Model Pre-/Post-Processing
Image Classification CIFAR10 [25] AlexNet, ResNet18/34,

VGG11/13/16/19 Data Fetch, Image Resizing
Sign Recognition GTSRB [46] VGG11/19, ResNet18/34
Object Detection Self-collected tiny-YOLO [40] Image Reading from Camera,

traffic light dataset
UrbanSound [41]
Ravdess [34]

Bounding Box Regression
Down-Sampling, MECC
Feature Extraction

Sound Classification
Emotion Recognition

SBCNN [42]
TSTM[16]

6.2 End-to-end System Evaluation

We implement RT-mDL and evaluate the end-to-end system perfor-
mance in an autonomous driving testbed. As shown in Fig. 11(a),
the F1/10 Autonomous Vehicle [8] is equipped with two cameras,
a LiDAR and a small heterogeneous embedded platform (NVIDIA
TX2 with Orbitty Carrier board). The main function of this system
is to detect traffic lights on both sides of the road while classify-
ing the traffic signs at the same time. There are 4 real-time DL
tasks running on this platform: Task1-2 for traffic light detection
(with tiny-YOLO-v3 model on live data), and Task3-4 for traffic sign
recognition (with VGG11 model on GTSRB dataset preloaded on the
vehicle). Fig. 11(b) and Fig. 11(c) show the actual scene and layout
of the experiment. The autonomous vehicle runs a lane detection
algorithm to follow along the lane fence at the speed of 1 m/s, and
detects high and low traffic lights through two cameras separately.
Some images captured by the vehicle are shown in Fig. 12. The
tiny-YOLO model is pre-trained on the dataset collected from four
different runway scenes (with different placement of traffic lights
and traffic signs). The execution time of different segments in these
DL tasks are shown in Table 3.

Performance of Execution Optimization. We first evaluate the
performance of RT-mDL by comparing RT-mDL with two baselines:
UM-NMC and DM-MC. The first baseline UM-NMC selects DL

RT-mDL: Supporting Real-Time Mixed Deep Learning Tasks on Edge Platforms

Lane Fence ||

Red Traffic Light - Low [0
Green Traffic Light - Low [l
Red Traffic Light -High @
Green Traffic Light -High @
Traffic Sign A\

(c) Layout of testing field

Figure 11: F1/10 autonomous driving testbed.
1 A g n

GB RB GG RR BB GR RG

Figure 12: Examples of detection results (‘G’- Green, ‘R’ - Red, ‘B’ - Blank).
The first letter of the image label (e.g., ‘R’ of ‘RB’) represents the ground
truth of the image, while the second letter represents the detection result.

models without scaling and executes them under the Utilization
Monotonic scheduling rule. DM-MC chooses model variants with
model scaling for execution under Deadline Monotonic scheduling
rule. Although the task workload is reduced under this execution
mechanism, the detection performance will be influenced by the
model accuracy as shown in Eq. (8). A recorded video clip of real-
time detection results from these three methods is available at the
link*.

We use RT-mDL to find the optimal execution strategy under this
application scenario that meets the task deadline missing bound
of 10%. The depth of tiny-YOLO model and the width of VGG11
model are scaled to generate model variants. The retraining process
after scaling is conducted on their pre-trained dataset. We deploy
the generated model variants at once on the vehicle. The execution
strategy is optimized via the iterative optimization process intro-
duced in Section 4.3. The results summarized in Table 3 show that
all the DL tasks meet the deadline missing rate bound, while only
suffering minor accuracy degradation.

Table 3: Task Parameter and Results of RT-mDL.

DL task GPU sub- | CPU sub- | CPU sub- | Sampling DMR (%)
task (ms) task1 (ms) task2 (ms) rate (fps)
YOLO-Obj_Det-1 19.62 7.99 7.06 12 6.54
YOLO-Obj_Det-2 19.62 7.99 7.06 12 4.92
VGG-Sign_Rec-1 13.16 1.40 0.26 20 9.57
VGG-Sign_Rec-2 13.16 1.40 0.26 20 5.36

Table 4 shows Missed Alarm Rate (MAR) and False Alarm Rate
(FAR) for each frame and probability for detecting red traffic light
(Det_Prob). MAR and FAR in the table are calculated for single
frame, which is given by the accuracy of executed model variants
and the deadline missing rate as shown in Eq. (8).

4https://aiot.ie.cuhk.edu.hk/Project_EdgeALhtml

SenSys’21, November 15-17, 2021, Coimbra, Portugal

Table 4: Traffic Light Detection(‘HL’-high traffic light, ‘LL’ - low traffic light,
‘NMC’ - no model scaling, ‘MC’ - model scaling, ‘UM’ - Utilization Mono-
tonic, ‘DM’ - Deadline Monotonic).

Approach MAR (%) | FAR (%) | Det_Prob 0.5m(%) | Det_Prob 0.75m(%)
RT-mDL (HL) 9.30 0 98.70 99.35
UM-NMC (HL) 27.17 0 79.47 79.13

DM-MC (HL) 27.90 0.76 78.20 77.59
RT-mDL (LL) 9.09 0.27 98.78 99.40
UM-NMC (LL) 14.56 0.42 95.62 96.92
DM-MC (LL) 33.73 0.91 67.24 64.04

FP(Np)x(1-MIS

FAR = tp = (_I{EF)’+§'N _ :)
MAR = —EN_ _ EN(NQ+TP(Nj)x(1-MIS)
TP+FN TP+FN

False Negative (FN) here means that no traffic light is detected or
the detection result indicates green light when the traffic light is
red. False Positive (FP) here means that the detection result is red
light when there is no traffic light or traffic light is green. Given
the per-frame MAR that represents the probability of unsuccessful
detection, we can calculate the probability of detecting a red traffic
light under different fusion criteria. For example, under the majority
voting rule, if more than half of the live images during a distance
of 0.5m are detected as red light, the detection result is deemed
as red light. We evaluate two scenarios with distance thresholds
of 0.5m and 0.75m. We note that they are usually set according
to the driving speed, field of view of car cameras, and response
time of vehicle breaking system. Table 4 shows that the vehicle
with RT-mDL reduces the missing alarm rate for each frame by
17.87% and 18.3% respectively, compared with UM-NMC and DM-
MC baselines for high traffic light detection. This result indicates
that the vehicle has a lower probability for missing the red traffic
light. Our approach achieves near 100% detection probability, and
increases the Det_Prob_0.5m by 19.23% and 20.5% compared with
other two execution mechanisms, suggesting that the autonomous
vehicle with our framework has a substantially higher probability
of stopping at a red traffic light.

Adaptation to Scenario Variations. We also evaluate the adap-
tation performance of RT-mDL. As we introduced in Section 4.3,
RT-mDL can adapt to scenario variation by searching for the opti-
mal solution for various task execution conditions before deploy-
ment and then adjust the strategy dynamically at runtime. In this
autonomous driving application, we build various scenarios by run-
ning the F1/10 autonomous vehicle at different speeds, resulting in
different execution time requirements (deadlines). Specifically, the
vehicle runs at three speeds of 0.75m/s, 1m/s and 1.25m/s for 300
seconds (2500-4200 jobs), and the corresponding sampling rates are
9fps, 12fps and 15fps, respectively.

— T T
140 —— low-speed 140 —— low-speed
@ medium-speed m medium-speed
E10 —— high-speed E10 —— high-speed
[=== deadline] ===~ deadline
£ 100 £ 100
= =
@ 80 o 801 || | || FTT T
w (%}
] S
g 60 g &0
3 3
o 40 o 40
20
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Execution Times Execution Times
(a) RT-mDL (b) Baseline: UM-NMC

Figure 13: Performance of Scenario Adaptation.

https://aiot.ie.cuhk.edu.hk/Project_EdgeAI.html

SenSys’21, November 15-17, 2021, Coimbra, Portugal

Fig. 13 shows the response time of Task2 (YOLO-based traffic
light detection) over three speed levels with and without RT-mDL.
Fig. 13 (a) shows that RT-mDL consistently maintains a deadline
missing rate below the threshold 10% among all the speed levels
(9.28% for high-speed). In contrary, the UM-NMC strategy, will
cause massive deadline misses under high-speed level (60.09% for
medium-speed, 71.66% for high-speed). This is because the higher
speed corresponds to more severe resource contention, which leads
to more deadline misses. We can see that a shorter response time
does not always correspond to a lower deadline missing rate. Un-
der the same UM-NMC strategy, the response time of high-speed
(71.7ms on average) is shorter than the medium-speed (85.42ms on
average), although its missing rate is higher. This result confirms
our observation that fixed rule-based scheduling cannot achieve
satisfactory real-time performance for mixed DL tasks. Hence, we
cannot evaluate the real-time performance of the task only by the
length of the response time. We also observe that there is a spike
in the first job of DL task, this is because the DNN inference is lazy
initialized in the current DL frameworks, which takes about 87 ms.
Overall, the results in this section show that RT-mDL can adapt to
significant scenario variation and maintain consistent low deadline
missing rate under various driving speeds.

6.3 Performance of Model Scaling

We now evaluate the performance of our storage-bounded multi-
level model scaling algorithm under tight and loose storage bounds.
We generate model variants for VGG11 and LeNet via width scaling,
while adopting depth scaling for VGG19 and ResNet34. To evaluate
the storage saved by our method, we compare with two baselines:
no_share and share_all. The results in this section show that our
multi-level model scaling method can meet different storage re-
quirements while retaining the same accuracy level.

1000 Tight Storage Bound 1000

— = Loose Storage Bound

Tight Storage Bound
659 == = Loose Storage Bound
500 400

500{_ 413

Storage (MB)
Storage (MB)

0
no_share Ugnt_bm““d \oose_b"“"d shafe!“‘“ no_share t-\ght_b"““d ‘oose_""““d Share/a\‘

(a) Width Scaling (b) Depth Scaling
Figure 14: Storage of model variants under different storage bound.

Fig. 14 shows the overall storage of all model sets, we observe that
model sets can meet storage bound under either tight bound or loose
bound. For example, the overall storage of VGG11-LeNet model
set is 82.05 MB and 221.73 MB under tight_bound (100MB) and
loose_bound (250MB) respectively, both of which meet the storage
bounds. Without weight sharing (no_share), it takes 412.77MB to
store all the model variants of VGG11 and LeNet. The results are
also consistent for depth scaling, on the model set VGG19 and
ResNet34. Hence, we conclude that our method can meet the storage
requirements on model variants.

Fig. 15 shows the accuracy of each model variant generated under
different storage bounds. The accuracy of basic model is different
of each method in Fig. 15, because the weights of basic model will
be retrained together with other model variants. We observe that
model variants generated by RT-mDL can achieve higher accuracy
than those generated by share_all method, e.g., 3.67% per model
variants for ResNet34. This is because weight sharing among all
the model variants will ensure the shared weights fit well for all the
model variants, regardless of the characteristics of each individual

10

Neiwen Ling, Kai Wang, Yuze He, Guoliang Xing and Dagi Xie.

®
2

85
83
—_ —~ 80
> >75
ge]
S E
3 e 270
g no_share g no_share
share_all 65 share_all
79 loose_storage_bound loose_storage_bound
tight_storage_bound 60 tight_storage_bound
01234567 8910111213141516 01234567 80910111213141516
Model Variant ID Model Variant ID
(a) VGG11 (Width Scaling) (b) LeNet (Width Scaling)
88
86
86
ol 3
< Sas
>82 >
3 38
o e
5 80 S
9 AU
g no_share g no_share
78 share_all 78 share_all
loose_storage_bound Ioose_storage_bound
76 tight_storage_bound 26 tight_storage_bound

o 7 0 2 3 a4 5 6 7
Model Variant ID

(d) VGG19 (Depth Scaling)

2 3 4 5 6
Model Variant ID

(c) ResNet34 (Depth Scaling)
Figure 15: Model variant accuracy with different storage bound.
model variant. Without weight sharing, the accuracy of each model

variant is a little higher, at the price of high overhead in storage
usage, e.g., 464MB more storage usage for ResNet34-VGG19.

6.4 Effectiveness of Strategy Optimization

To evaluate the effectiveness of the proposed MOEA-based opti-
mization approach in RT-mDL, we compare its performance with
other two methods for searching feasible execution strategies. We
design a baseline that optimizes the execution strategies based on
Response Time Analysis (RTA) [7], which is widely adopted in
real-time literature for bounding the response time of each task
under specific scheduling algorithm [7, 11, 54, 57]. The difference
from our approach is that real-time performance of DL task set
under different execution strategies is evaluated by calculating the
response time. To validate the effectiveness of multiple objective
optimization, we design a baseline based on Random Search (RS).
Under this approach, an execution strategy is randomly generated
each time, and the performance of the execution strategy is evalu-
ated on the target edge platform and then stored in the database.
The search process terminates until the best strategy in the database
meets the real-time performance requirements.

;5 14 0.05 ;\3 30
-~ RTA ° ~ RTA °
g1z @~ RS o Qs B~ RS 15 0.020
© © 0.04 © ©
P Ty I RT-mDL | & 2 RT-mDL |2
20

o a o a
£ & oo < gooe
7 = @ 15 =
RIS > o >0.010
s 0'0.02 s %)

© 10 - =—f—+=H=-——————r] ©
v . s P s
= O .01 = £ S 0.005
T 2 < T c fa R NN ¢
2 b5 7T "M%
a — 0.00 Ao — 0.000

0 1 2 POPRS 01234567 <RE o
Task ID o« Task ID &«

(a) 4 DL Tasks (b) 8 DL Tasks
Figure 16: Performance of different optimizer.

We use deadline missing rate and the sum of accuracy loss ratio
for all tasks (we use accuracy loss ratio to denote it at the rest of
section for concise) defined in Eq. (1) as the metrics to quantify the
performance of RT-mDL and the two baselines. Each baseline is re-
peatedly evaluated for ten times under the same task configuration.
The mean and variance of the experiment results are presented
in Fig. 16. The 4-task set contains two ResNet18 tasks and two

RT-mDL: Supporting Real-Time Mixed Deep Learning Tasks on Edge Platforms

VGG19 tasks, while the 8-task set contains four VGG13 tasks and
four AlexNet tasks. The deadline of each task is set randomly, and
the maximum deadline missing bound of each task is set to 10%
(which is the default setting for the rest of Section 6 unless stated
otherwise). Results show that RT-mDL performs better than the
other two baselines in terms of deadline missing rate and accuracy
loss ratio under the 8-task scenario. In contrast, when there are only
4 tasks, RTA approach achieves a lower deadline missing rate while
sacrificing more accuracy. This is because RTA is pessimistic and
hence leads to high accuracy loss ratio. This also causes the failure
of RTA approach to find a feasible solution under the 8-task sce-
nario. As shown in Fig. 16(b), Task 1-3 all exceed the 10% deadline
missing bound (i.e., 12.86%, 14.22%, 14.78%, respectively). Compared
with RTA, our approach can reduce deadline missing rate by 23.48%
for total eight tasks with an accuracy loss ratio of 1.15%.

6.5 Joint Model Scaling and Scheduling

To reflect the performance gain of joint model scaling and schedul-
ing, we compare our approach with other five methods that focus on
either model scaling or scheduling policy, including DM-NMC, DM-
MVS, DM-MC, SPO-NMC, and UM-NMC. We generate 8 variants
for each model and the absolute accuracy loss for the smallest model
variant is 3.46% (AlexNet), 2.15% (VGG11), 2.74% (VGG13), 4.44%
(VGG16) and 5.06% (ResNet18), respectively. Baseline DM-MVS dif-
fers from RT-mDL only in scheduling policy, i.e., it is obtained by
fixing the scheduling policy to DM, and therefore the solution space
is changed to model variant selection. This baseline is similar to
several state-of-art approaches (e.g., NestDNN[13], MCDNNJ[17])
as we introduced in Section 2. Baseline SPO-NMC differs from RT-
mDL only in model variant selection, i.e., it is obtained by fixing
the model variant to the basic model for each task and therefore
the goal is to find the best task priority assignment. To show the
generality of our joint model scaling and scheduling approach, in
the following sections, we will evaluate the performance of RT-
mDL under different task workloads, DNN model combinations,
platforms and missing rate requirements.

Impact of Different Workloads. We demonstrate the effective-
ness of RT-mDL under different workloads induced by various
settings of task deadlines. Specifically, we consider loose and tight
deadlines for six typical DL tasks, where the deadline for each task
is set to be four times of the measured average execution time under
the setting of tight deadlines (i.e., heavy workload), and six times
for loose deadlines (i.e., light workload). As shown in Fig. 17(a),
with light workload, RT-mDL reduces the deadline missing rate
of task AlexNet-2 to 6.15% compared with SPO-NMC (8.94%), UM-
NMC (16.29%), DM-NMC (10.90%) with minor accuracy loss ratio
(1.0%). Compared with DM-MC and DM-MVS, RT-mDL can sacri-
fice 74.69% and 21.63% less accuracy loss ratio respectively, while
achieving comparable performance of deadline missing rate. For
tight deadlines as shown in Fig. 17(b), RT-mDL still can achieve
1.87% average deadline missing rate with minor accuracy loss ratio
(1.7%), while SPO-NMC, UM-NMC and DM-NMC can only achieve
27.77%, 25.28% and 41.99% respectively. RT-mDL achieves 58.32%
reduction in accuracy loss ratio compared with DM-MC with com-
parable deadline missing rate, while DM-MVS can only achieve

11

SenSys’21, November 15-17, 2021, Coimbra, Portugal

46.04% reduction compared with DM-MC. RT-mDL performs better
than most other methods under both loose and tight deadlines.

pel .2

© 004 = 5 0.04 —

< -4

wn (%]

@ 002 9 002 I I

a3 I I 3

9 000 x x x S 000 x x x

< 39 < 90

’\'5 AlexNet-1 @ 80 AlexNet-1

<5 AlexNet-2 < AlexNet-2

9 AlexNet-3 & 70 I I AlexNet-3

& 2 VGGI31 & g l VGG13-1

ey ¥ == VGG132 O Il VGG13-2

< £50

715 H vee133 | g VGG13-3

2 2 40

= I = I

o 10 o 30

£ i i] £

5 5 20

kel e}

8 5 H I B .

2 I s Q1w I ;
oLl > W F I o 1E P2 -

oG G
a) Light Workloa
gh kload

S0 NN G
(b) Heavy Workload
Figure 17: Performance comparison under different task workloads (NMC’
- no model scaling, ‘MC’ - model scaling, ‘MVS’ - model variant selection,
‘SPO’ - scheduling policy optimization, ‘UM’ - Utilization Monotonic, ‘DM’
- Deadline Monotonic).
DNN Model Combination. In this section, we assess the general-
ity of RT-mDL for various model combinations and edge platforms.
We choose two mixed task sets: one contains ResNet34-based sign
recognition and SBCNN-based sound classification, and the other
contains VGG19-based image classification and LSTM-based emo-
tion recognition. LSTM-based DL task runs totally solely on the
CPU cores, because it performs better on the CPU than on the GPU.
Due to its low compressibility in the width/depth dimensions, it has
only a single-level model variant. Results are shown in Fig. 18(a)
and 18(b), where the histogram indicates the deadline missing rate
and the line graph shows the accuracy loss ratio. Compared with
DM-NMC, RT-mDL can reduce 49.50% deadline missing rate on
average for SBCNN-ResNet34 task set and 10.48% for LSTM-VGG19
task set. Compared with DM-MC, RT-mDL has comparable average
deadline missing rate but achieves 67.06%, 74.61% reduction in accu-
racy loss ratio for these two task sets respectively. The results show
that RT-mDL achieves better performance over baselines across
various DNN model combinations.

1 08 .08
ResNet-Sign Rec-l mmm ResNet-Sign_Rec-4 VGG-img_Cla-1 == VGG-Img_Cla-4
Q ResNet-Sign_Rec-2 SBCNN-Sound_Cla-1 .07 [VGG-Img_Cla-2 LSTM-Emo_Rec-1 0.07
+ 100 ResNet-Sign_Rec-3 SBCNN-Sound_Cla- o Hso VGG-Img_Cla-3 LSTM-Emo_Rec-2 o
T = © =
o “ 006 @ £ 0.06 ©
2 w0 L o, -4
£ 005 £ 0.05 0
@ @
(%) © wn o
S 60 004 =30 0.04 -
= > = >
o x & [O w 003 9
0.03 X
£ w0 . I C £2 l e
oS 0023 O I 0023
8 20 < 8 10 l ! e <
a 0nl kl I 0.01<C
i i
B irdegt bl 0.00 it 1 0.00

RT-mDL UM-NMC DM-MC DM-NMC

(a) SBCNN-ResNet34

RT-mDL UM-NMC DM-MC DM-NMC

(b) LSTM-VGG19

08 .08
= VGG11-1 AlexNet-1 = VGG11-1 AlexNet-1

3 VGG11-2 AlexNet-2 007 5 8 50 VGG11-2 AlexNet-2 0.07 o
@© 40 B . = © . . =
2 VGG11-3 AlexNet-3 0.06 2 & VGG11-3 AlexNet-3 0062
o 1 L o, 1
£ 0.05 0 S 0.05 »
@ 30 AT
) o wn l N o
S 00s a5 30 0.04 1

> I >
v 20 0033 © 0.03 3
£ S £2 o
S l] (00233 0023
© o © Q
g L 001 g 10 & 0.01<
o 173 a -

l , i DN
& L) 0.00 x k. 0.00
RTMOL yMANMC oWMC oy NMC RTDL GMANMC ouME i NMC

(c) Nano (d) TX2

Figure 18: Performance comparison under different DL task sets and edge
platforms (‘NMC’ — no model scaling, ‘MC’ — model scaling, ‘UM’ - Utiliza-
tion Monotonic, ‘DM’ - Deadline Monotonic).

SenSys’21, November 15-17, 2021, Coimbra, Portugal

The experiments in previous sections are conducted on Xavier. In
this section, we evaluate RT-mDL on low-power devices. As shown
in Fig. 18(c) and Fig. 18(d), RT-mDL can reduce the deadline missing
rate effectively on both edge platforms with minor accuracy loss
ratio. Specifically, RT-mDL suffers a minor accuracy loss ratio 1.17%
on Nano, while reducing deadline missing rate by 8.79%, 5.41% on
average, compared with UM and DM scheduling algorithms respec-
tively. On TX2, RT-mDL achieves 66.74% reduction in accuracy loss
ratio compared with the maximum level model scaling (DM-MC)
while achieving comparable average deadline missing rate (3.23%
for RT-mDL, 0.97% for DM-MC). This result shows that RT-mDL
can be effectively applied on different edge platforms.

Different Missing Rate Requirements. RT-mDL supports vari-
ous settings of missing rate bounds, which is desirable for mixed-
critical real-time applications [14, 48]. To evaluate RT-mDL for
mixed-critical systems, we conduct experiments on task sets with
five different settings of missing rate bounds. Fig. 19 shows the
results, where all the five runs are under the same VGG-11-AlexNet
task set and deadline setting. We set three levels of missing rate re-
quirements: 5%, 10%, 20%, and group six DL tasks into three groups.
Each task group is assigned a missing rate bound. For example,
high_low_mid means that VGG11-1 and VGG11-2 are assigned
missing rate bound of 20%, VGG11-3 and AlexNet-1 are assigned
the missing rate bound of 5%, while the other two tasks are assigned
10%. same_mr represents that all tasks are equally important (i.e.,
with all 10% bounds). As shown in Fig. 19, RT-mDL performs sat-
isfactorily across different settings of missing rate bounds. For
example, the resultant missing rate is 16.45% under high missing
rate bound, while it is 5.12%, 1.81% under medium and low missing
rate bounds, respectively. This result shows that RT-mDL can adapt
the assignment of task priority and selection of model variants
efficiently for different mixed-critical systems.

0.04
= VGG11-1 ..
VGG11-2
VGG11-3

AlexNet-1
AlexNet-2
AlexNet-3

High Missing Rate Bound
Medium Missing Rate Bound
=== Low Missing Rate Bound

w
o
o
o
@

adline Missing Rate
S
o
o
N
curacy Loss Ratio

i
=]
Ce T I

L |
JI L —11 I I ,,,,,,, rI,,],,,,o.mu

' 5
[a] 0 e a] - 1]
Inw hinh mid mid law hinh hinh mid low

<ame mr
Figure 19: Performance of different missing ratio requirements.

6.6 System Overhead

The major system overhead of RT-mDL is caused by the priority-
based DL task scheduler, since it needs to run constantly. The exe-
cution strategy optimizer of RT-mDL may also incur considerable
overhead. However, it is only infrequently invoked in the itera-
tive optimization process, which can also be offloaded to the cloud.
Therefore, we focus on analyzing the CPU overhead of DL task
scheduler in this section. We m