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ABSTRACT
AI applications powered by deep learning are increasingly run-
ning on edge devices. Meanwhile, many real-world IoT applications
demand multiple real-time tasks to run on the same device, for
example, to achieve both object tracking and image segmentation
simultaneously on an augmented reality glass. However, the cur-
rent solutions can not yet support such multi-tenant real-time DNN
inference on edge devices. Techniques such as on-device model
compression trade inference accuracy for speed, while traditional
DNN compilers mainly focus on single-tenant DNN model opti-
mization. To fill this gap, we propose Aaron, which leverages DNN
compiling techniques to accelerate multi-DNN inference on edge
GPU based on compile-time kernel adaptation with no accuracy
loss. Aaron integrates both DNN graph and kernel optimization to
maximize on-device parallelism and minimize contention brought
by concurrent inference.
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1 INTRODUCTION
Recently, efficient execution of multiple DNNs on a single device
has gained significant interests, which requires the device to pro-
cess several DNN based tasks concurrently at run-time. These tasks
run in a concurrent manner which poses several challenges for ef-
ficient on-device multi-DNN inference. Multiple deep learning
tasks have to share limited on-board resources including memory
bandwidth, caches and processing elements.

To address resource contention among multiple DNN execution,
recent works such as [3] exploit model compressibility to perform
latency-accuracy trade-offs among multiple DNN models. As a re-
sult, the model with less importance may sacrifice its own accuracy
due to the contention from a more important model execution.
Although it is a promising solution to resource contention, the
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Figure 1: (a) Slowdown of Inception_v3 during co-running
against isolation inference. (b) Performance of three com-
piled versions under different contention levels. The grey
dotted line shows the optimal performance traces.

model compression ratio is highly model-dependent. One needs to
search for the optimal model compression methods for emerging
DNN models. What’s more, this kind of approach will also lead to
substantial accuracy loss. Another class of emerging solutions to
support high-performance on-device multi-DNN inference is run-
time scheduling. Multi-DNN with multiple parallel Directed Acyclic
Graphs(DAG)’ co-locations leads to extensive inter-operator con-
tention, which requires careful operator scheduling among DNN
tasks. Works such as [4] provide either learning-based or heuristic-
based search algorithms to generate pipelines for multi-DNN infer-
ence. The key idea behind them is to re-schedule the DNN kernels
execution order to avoid the potential resource contention.

Our work leverages DNN compiling techniques that incorpo-
rate both inter-kernel and intra-kernel optimizations to mitigate
the contention brought by concurrent kernel executions in a fine-
grained manner. Traditional deep learning compilers such as [2, 5]
usually accelerate DNN models by generating high-performance
DNN kernels and transformed DNN graphs. However, they mainly
target optimizing one model under static environments. In this
work, we propose Aaron, a compile-time DNN kernel adapta-
tion framework to provide elastic inference schemes during
concurrent inference on edge GPU with no accuracy loss.
2 MOTIVATION STUDY
Our work focuses on edge GPU. We use NVIDIA GTX 2060, which
consists of 34 streaming multiprocessors (SMs)Fig. 1a shows the
slowdown for Inception_v3 when co-running with different back-
ground models. The slowdown is defined by the ratio of inference
latency with or without co-runners.

We observe that variations occur among co-running settings,
which is caused by different "contention channels"—shared re-
sources such as L1 memory, DRAM, and compute units within the
GPU. In another word, co-located "compute-bound" or "memory-
bound" DNN kernels affect each other’s inference speed. Without
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Figure 2: Aaron System Design.

carefully scheduling, co-execution kernels with the same contention
channel can easily lead to resource contention. This motivates us
to carefully design an online kernel scheduler to wisely "bin-pack"
different concurrent kernel groups to avoid executing overlapped
kernels with the same contention channel.

To mitigate inevitable resource contention among co-running
models, we extend IOS [1], a DNN graph compiler that generates
different concurrent strategies for different stages in a DNN graph
with branches (e.g. Inception_v3). We generate three compiled ver-
sions of Inception_v3 based on IOS under four levels of contention
pressure: isolation; light; medium and heavy kernels. Fig. 1b com-
pares the performance across these three implementations under
four contention levels and produces an optimal performance trace
(the grey dotted line). The key observation here is that the opti-
mal compiled graph structures are not static when the background
co-locating DNN tasks are different.

These findings motivate our design of Aaron to profile
and deal with the hardware resources contention when DNN
tasks co-executing on edge GPU.

3 PROBLEM FORMULATION AND SYSTEM
DESIGN

The objective of Aaron is to minimize the run-time contention
caused by overlapped kernels while maximizing the on-device par-
allelism to fulfill resource utilization and maximize the overall DNN
tasks throughput. The objective function can be formulated as:

𝑚𝑎𝑥 [𝑃 (𝑠1) + 𝑃 (𝑠2) + ...𝑃 (𝑠𝑛)]
𝑚𝑖𝑛[𝐶 (𝑠1) +𝐶 (𝑠1) + ...𝐶 (𝑠𝑛)]

(1)

where 𝑃 refers to parallelism on GPU; 𝑠𝑛 represents the run-time
stages. A stage contains operators from different concurrent DNN
sequences streams; 𝐶 is the measured contention metric. Fig. 2
shows our system design, the main components inside Aaron can
be divided into offline and online phases.

Offline Phase:We design a background contention generator
based on our profiling results of resources contention on edge GPU
to guide the adaptive compiling process. We also propose an adap-
tive contention-aware kernel generator, which is to generate the
adaptive compiled kernel bags with different versions, correspond-
ing to different levels of contention.

Online Phase:We propose a lightweight predictor to predict the
upcoming contention for different adaptive kernels combinations
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Figure 3: Preliminary Results of Aaron.

from different DNN sequences. We also design an online adaptive
kernels scheduler, aimed to coordinate both the kernel version
selections and the concurrency work groups from different DNN
sequences. The scheduler is intermittently activated.
4 PRELIMINARY RESULTS
We evaluate the performance of the contention-aware compiling
module in Aaron by comparing it against the baseline solo compiling
and original. Solo compiling compiles an Inception_v3 model with
no other co-located DNN models. Original refers to the inference of
the original DNN model with no acceleration from the compiling
aspect. We use the latency of each model to quantify how well
the performance is improved. We select MobileNet_v3_small as
the light background workload and MobileNet_v3_small co-located
with ShuffleNet as the heavy background workload. As shown in
Fig. 3, Aaron exhibits much higher performance: 1.35x and 1.8x
over solo compiling and 1.34x and 1.5x over original under two
background workloads. This is because our system can capture
on-device contention behaviors including memory bandwidth and
computation unit sharing, and provide adaptive kernels at run-time.
5 CONCLUSION AND FUTUREWORK
We present Aaron, a multi-DNN inference accelerator. Our work
mainly attempts to mitigate the contention incurred by concurrent
DNN inference on edge GPU by leveraging adaptive compiling
and online scheduling, thus accelerating DNN tasks and increasing
the overall throughput. In the future, we will extend this work by
analyzing memory and compute resource contention on edge GPU
and providing detailed verification on the online scheduler.
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