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ABSTRACT
Smart traffic is an emerging research area gaining more attention
due to a class of emerging applications such as autonomous driving.
Most smart traffic scenarios are outdoors, which are hard to collect
traffic data and build demanding sensing systems. In this work,
an indoor smart traffic testbed with an F1TENTH autonomous
driving vehicle is built, allowing the collection of traffic datasets
under different scenarios and performing various smart traffic tasks.
This novel data collection system and collected dataset can help
research teams build various smart traffic systems and evaluate
indoor smart traffic datasets. The collected traffic light dataset is
publicly available at the link1.

CCS CONCEPTS
• Computer systems organization→ Sensor networks.
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1 INTRODUCTION
The exploration of smart traffic has drawn growing attention in
recent years as it can support a wide range of applications, such as
assisting autonomous driving [4], improving public safety and city
services [10], etc. Research on smart traffic spans several different
1https://zenodo.org/record/7181314#.Y0a0qXZBxD8
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important fields, such as autonomous driving [5, 7, 12, 14], real-time
AI [9, 18], robotics [3, 8], as well as simultaneous localization and
mapping [17]. However, it is difficult for researchers to conduct
rapid data collection, system development and implementation,
algorithm design and evaluation due to the complex and unpre-
dictable real-world environment [11]. For example, dynamics in
the real-world environment not only complicate the data collection
procedure but also degrade the quality of the collected data. For ex-
ample, excessive heat in a hot summer may lead to the malfunction
of data collection systems, and heavy rain will affect the quality
of the collected visual sensor data. Thus, there is a high demand
for reproducible and controllable simulation platforms for smart
traffic scenarios. While significant efforts have been made to collect
smart traffic datasets from outdoor scenarios [1, 2], building in-
door smart traffic testbeds and collecting data from such simulated
indoor scenarios are scarce.

In this work, we present the design and implementation of an
indoor smart traffic testbed that enables the simulation of multiple
road scenarios. We also provide a use case to demonstrate how
to utilize our testbed for a specific application. In particular, we
mimic real-world road scenarios by simulating real vehicles and
roadside infrastructures, such as lane fences, and traffic signs/lights.
Our testbed uses F1TENTH autonomous vehicles, which are fully
functional and open-source. An F1TENTH vehicle is 1/10th-scale
of a real self-driving car but only 1/100th of the cost. An F1TENTH
vehicle mainly consists of an embedded compute platform, a motor
and servo controller, a power distribution board, a WiFi telemetry,
and sensors like LiDARs and cameras, which makes it complex
enough to mimic the real vehicle’s driving dynamics. Moreover,
F1TENTH has a large and vibrant community. It has been used as
the main platform in 7 international autonomous driving compe-
titions, and more than a dozen institutions have offered courses
based on it. Thus, it is an ideal platform for streamlined algorithm
development, testing, and validation in the field of autonomous sys-
tems. To demonstrate the utility of our testbed, we develop several
real-time traffic light classification applications with this testbed.
Specifically, we construct a circular traffic lane with roadside infras-
tructures and drive the F1TENTH vehicle along the lane fences to
collect traffic light data. We then train a popular DNN model (i.e.,
tinyYOLO [13]) based on the collected data and implement it on
the vehicle. With this trained model, our vehicle can classify the
traffic lights in real-time.
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The major contributions of this paper are as follows. First, we
build an indoor smart traffic testbed with a widely-used F1TENTH
autonomous vehicle. Second, we run real-time smart traffic tasks
such as traffic light detection and road condition collection on
the vehicle. The testbed we built can guide researchers to build
similar data collection systems and thus evaluate their designed
systems/algorithms. For example, researchers in real-time AI can
use the dataset collected by the vehicles at different speeds to eval-
uate the task performance under different deadline settings. The
rest of this paper is organized as follows. Section 2 describes the
system architecture and implementation. Section 3 describes the
collected dataset and experimental results for a specific use case.
Section 4 concludes this study with some future works.

2 SYSTEM AND IMPLEMENTATION
2.1 Overall System
We set up our indoor smart traffic testbed in a 5.8𝑚× 6.8𝑚 lab. This
testbed combines the sensing system from both the roadside and
the vehicle side, as well as the infrastructure for building traffic
scenarios, such as traffic lanes, traffic signs, and traffic lights.We can
simulate various road scenarios by adjusting lane shapes and the
locations of traffic signs and traffic lights. The F1Tenth autonomous
vehicle is responsible for simulating the driving car and collecting
the smart traffic data from the vehicle side. We can perform several
autonomous driving tasks such as lane detection, route navigation,
traffic sign detection, and traffic light detection on our F1Tenth
vehicle. The vision system could record the overall running status
of the entire lane from the roadside.

2.1.1 Smart Traffic Infrastructures. In this testbed, we use fences to
simulate the road’s boundaries and use movable toy traffic signs and
traffic lights to simulate those in real-world traffic scenes. The traffic
signs are of height 1𝑚, and the traffic lights come in two heights:
0.7𝑚 and 1.1𝑚, which are used to simulate different types of real-
world traffic lights with different heights. The traffic lights, traffic
signs, and lanes are all movable, which facilitate flexible adjustment
of the infrastructures’ locations and allow us to construct diverse
smart traffic scenarios. For example, we show scenes and layouts
of two possible test scenarios in Fig. 1. As shown in Fig. 1(a)1(b),
we build a circular runway with a diameter of 4𝑚, and place traffic
signs/lights every 0.5𝑚 in the inner circle and every 1𝑚 in the outer
circle to simulate the actual traffic scenario. The traffic lights will
flash alternately, and we set the traffic light alternating interval to
90𝑠 , which is consistent with the common practice of traffic light
duration. We also construct a straight track with one corner as
shown at Fig. 1(c)1(d). More traffic scenarios such as crossroads can
be built by changing the track layout and traffic light/sign positions.

2.1.2 F1TENTH Autonomous Vehicle. We build our F1TENTH Au-
tonomous Vehicle System from scratch. The designed layout and
different views of the vehicle are shown in Fig. 2. As shown in the
side view of the F1TENTH vehicle, our car has two chassis. The
lower level chassis is mounted with a LIPO battery, a brushless DC
motor, a servo steering, and a VESC motor and servo controller,
which serve as the foundation of the car. The upper-level chas-
sis is mounted with a small heterogeneous embedded platform
(NVIDIA TX2 with Orbitty Carrier board), two RGB cameras, and

(a) Actual scene of scenario 1
(b) Layout of scenario 1

(c) Actual scene of scenario 2
(d) Layout of scenario 2

Figure 1: Indoor smart traffic test scenario.

(a) Top view of
F1TENTH vehicle

(b) F1TENTH Vehicle Layout

(c) Side view of F1TENTH vehicle

Figure 2: F1TENTH autonomous driving testbed.

a HOKUYO UST-10LX LiDAR [6], which work together to per-
ceive the surrounding environment for multiple smart traffic tasks.
For standardized sensor management, we install Linux and ROS
(Kinetic) on the NVIDIA TX2.

2.1.3 The Roadside Vision System. Roadside surveillance is a main
component of the smart traffic. For example, the camera installed at
the smart traffic light can assist autonomous driving by providing
the traffic condition of the entire road. In our testbed, we construct a
roadside vision system to simulate real-world roadside surveillance.
This vision system consists of a Pico Zense ToF camera [15] and a
laptop. Fig.3 shows the rear and front views of the vision system.
This vision system records the running status of the whole test
scenario via capturing 1920 ∗ 1080 RGB images every 0.1𝑠 .



Dataset: An Indoor Smart Traffic Dataset and Data Collection System DATA ’22, November 6–9, 2022, Boston, MA, USA

(a) Front view of vision system (b) Rear view of vision system

Figure 3: Roadside vision system.

2.2 Smart Traffic Tasks
This section gives some instances for simulating smart traffic tasks
in our smart traffic testbed. To simulate traffic sign detection from
the vehicle side, we run a lane detection algorithm on the F1TENTH
vehicle and a traffic light detection algorithm based on a popular
DNN model (e.g., YOLO [13]). The fence following algorithm al-
lows the car to run along a preset track. The traffic sign detection
algorithm processes images captured by the camera installed on
the vehicle and thus achieves real-time traffic sign detection. Simi-
lar traffic sign/light detection or obstacle detection tasks from the
roadside can be performed on the computing unit of the vision
system. To simulate roadside-assisted autonomous driving, we can
run detection tasks on the computing unit of the vision system and
transmit the roadside information to the vehicle by establishing
a socket connection. The vehicle can fuse the data from the road-
side with its own sensor data to perform downstream autonomous
driving tasks such as route planning.

3 EXPERIMENTS AND RESULTS
3.1 Collection Procedure
In this section, we provide a use case of our indoor smart traffic
testbed, including data collection, algorithm implementation and
evaluation. Specifically, we collect a traffic light dataset, train a pop-
ular DNN model, and perform real-time traffic light classification
tasks on the vehicle. First, we build a 6𝑚 × 5𝑚 circular track and
place traffic signs and traffic lights on the inner and outer circles of
the track at intervals of 1𝑚 and 0.5𝑚 respectively. Then, we use the
F1TENTH vehicle introduced in Section 2.1.2 to simulate the real
vehicle and collect traffic light data. A fence following algorithm is
implemented on the car to control its mechanical movement, which
makes the car detect the fence using LiDAR and drive along the
fence autonomously. Two cameras are mounted on both sides of the
car, which capture images of traffic lights and traffic signs on both
sides of the track. The frame rate of the camera is 12𝐹𝑃𝑆 . In the
data collection process, we remotely launch/stop the F1TENTH car
via an SSH session between the car and our laptop. Once launched,
the car starts to run along the fence at the speed of 1𝑚/𝑠 , and saves
the images captured by the two cameras. Some collected images
are shown in Fig 4.

Figure 4: Examples of captured images and detection results.

3.2 Labeling
We use the image annotation tool LabelImg [16] for the data an-
notation of traffic light detection task, which aims to detect the
position and state of traffic lights in images. We manually annotate
the bounding boxes that enclose the traffic lights in each image,
each with a label indicating the current state of the traffic light, 0 for
a green light and 1 for a red light. Annotations are saved as YOLO
format files for the training of the traffic light detection model. We
summarize the dataset in Table 1. The data with label are available
at the link2. This dataset has already been used in a published work
for conducting a case study[9].

Table 1: Indoor smart traffic dataset.

# total images # green lights
in images

# red lights
in images

Indoor smart
traffic dataset 3507 1582 1925

3.3 Benchmark
We choose the Tiny-YOLO [13] object detector for real-time traf-
fic light detection task on the F1TENTH vehicle. The small model
size (< 50𝑀𝐵) and fast inference speed make the Tiny-YOLO ob-
ject detector naturally suited for embedded deep learning devices
such as the NVIDIA Jetson TX2. We train a Tiny-YOLO model on
the annotated image dataset. To evaluate the performance of the
model, we deploy two identical trained models on the F1TENTH
vehicle, and then launch the vehicle to run along the fence with
the two Tiny-YOLO models running on it simultaneously. The two
models individually process images from two cameras. As the vehi-
cle moves, live images of both sides of the track are continuously
captured by two cameras and fed into two models, which perform
traffic light detection in real-time. The inference results of the mod-
els are saved to the NVIDIA TX2. In the experiment, a total of 240
images were captured and processed. We use the State Detection
Accuracy (SDA) to measure the performance of the models, which
are defined as follows:

𝑆𝐷𝐴 =
𝑇𝐺 +𝑇𝑅

𝑇𝐺 +𝑇𝑅 + 𝐹𝐺 + 𝐹𝑅
(1)

True Green (TG) means that a green traffic light is detected as
green, and False Green (FG) means that a red traffic light is detected
as green or not detected. The same goes for red traffic lights. This
metric indicates the performance of the model in recognizing traffic
light states. Experiments show that the average SDA of the two
Tiny-YOLO models is 99.43%. Some quantitative results are shown

2https://zenodo.org/record/7181314#.Y0a0qXZBxD8
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in Fig. 4, which shows that the trained model accurately locates the
positions and recognizes the state of the traffic lights in the images.

4 CONCLUSION
This work develops an indoor smart traffic testbed that enables the
simulation of diverse real-world road scenarios. We also deploy
a real-time traffic application on the tested to illustrate its utility.
The data collection from more simulated smart traffic scenarios is
on-going and the deployment for other applications is in progress.

Future work will need to investigate how to simulate more smart
traffic components and more complex road conditions, such as ve-
hicle collisions. At the same time, we realize that the data collection
devices were not diverse enough. Developers can deploy more sen-
sors, such as thermal and radar, to collect data on more modalities
for further research.
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