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ABSTRACT
We present TensorBind, a novel approach aimed at unifying dif-
ferent hardware architectures for compilation optimization. Our
proposed framework establishes an embedding space to seamlessly
bind diverse hardware platforms together. By leveraging this uni-
fied representation, TensorBind enables efficient tensor program
optimization techniques across a wide range of hardware platforms.
We provide experimental results demonstrating the essentiality
and adaptability of TensorBind in translating tensor program op-
timization records across multiple hardware architectures, thus
revolutionizing compilation optimization strategies and facilitating
the development of high-performance compilation systems over
heterogeneous devices.
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1 INTRODUCTION
The deployment of high-performance machine learning models
has become a significant challenge in various domains like image
recognition, natural language processing, and virtual reality [7]. At
the same time, there is an increasing demand to deploy intelligent
applications on a wide range of mobile and edge devices, catering
to diverse users. DNN compilers serve as intermediaries between
AI development frameworks (e.g., PyTorch) and the execution hard-
ware, reducing the model deployment cycle and enhancing the
performance of deployed models on these devices [5]. However,
as model complexity and computational requirements grow, the
compilation overhead of DNN compilation also increases. For exam-
ple, compiling Llamma2 on an NVIDIA Orin may take up to three
days [1]. Thus, it is essential to investigate novel optimization tech-
niques to reduce the compilation overhead without compromising
the performance of the deployed models [6].
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Figure 1: A compiled transformer encoder kernel perfor-
mance and generation time of TVM Unity [1] on NVIDIA
GTX 2060 and Intel i7-10700F CPU. The baseline is ONNX-
runtime performance of the model on the two hardware.

We observe a similar phenomenon of cross-device compilation
in the emerging field of cross-modality embedding techniques. Re-
cently, there has emerged a framework called ImageBind [3], which
is the first framework that utilizes a shared set of parameters to
encode data frommultiple modalities (e.g., audio and IMU), creating
a unified embedding space for all modalities. This enables various
compositional multimodal tasks across different modalities, such
as evaluating pretrained vision models for non-vision tasks. We
propose TensorBind as a general-purpose solution for unify-
ing cross-device tensor program optimizations. Our approach
leverages foundation models based on transformers to achieve this
goal. The transformer-based foundation model serves as a powerful
representation learning tool, capturing both hardware architecture
and DNN model graph properties jointly.

2 MOTIVATION STUDY
We measured the time required for TVM Unity to generate op-
timized kernels for a transformer encoder on both a GPU and a
CPU device, with a batch size of 2 and a sequence length of 32.
As is shown in Fig. 1, it took approximately 2 hours on the GPU
and 3 hours on the CPU to identify the kernel with the highest
performance. A DNN model typically involves multiple kernels.
This incurs significant compilation overhead, especially in the con-
text of IoT devices where client diversity is prevalent. The long
optimization time for kernel generation is attributed to the large
optimization space and the complex tensor compilation process.
Instead of focusing solely on improving tuning efficiency for in-
dividual devices, we explore the possibility of transferring tuning
records across platforms with different ISA (Instruction set archi-
tecture) for the same kernel, thereby addressing the compilation
overhead more effectively.

To address this problem, we provide a summary of previous
research endeavors aimed at unifying the compilation process,
considering two distinct perspectives: the "top-down" approach,
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Figure 2: Abstractions for DNN domain-specific accelerators
and tensor intermediate representation abstractions for CPU
and GPU.

focusing on the DNN model-to-intermediate representation per-
spective, such as TensorIR (tensor intermediate representation) and
the "bottom-up" approach, concentrating on the hardware architec-
ture perspective [2, 4]. In Fig. 2, we present a visual representation
of the key insights derived from these works. The efficient sched-
uling of DNNs based on either of these abstractions is crucial for
harnessing the computational capabilities of DNN accelerators in
DNN compilers. However, previous research cannot jointly
consider and optimize the compilation process from both
perspectives, primarily due to the absence of representation capa-
bilities to integrate across heterogeneous devices.

3 PROBLEM FORMULATION AND DESIGN
The objective of TensorBind is to develop a foundation model that
unifies the DNN compilation process across diverse hardware plat-
forms, which can automatically translate the optimal DNN compu-
tational graphs compilation records to target multiple platforms,
enabling efficient cross-platform compilation.

Given the DNN computational graph 𝐺 , the set of hardware
platforms 𝑃 . A unified mapping function 𝐹 aims to transform the
optimized code representations for DNN computational graphs
across diverse hardware platforms. With the optimal trace of com-
pilation record 𝑇𝑚 on the hardware platform 𝑃𝑚 . The function 𝐹

produces an optimized code representation, denoted as 𝐶𝑛 , on the
target hardware platform 𝑃𝑛 . Mathematically, the formulation is as
follows:

C𝑛 = 𝐹 (𝐺, 𝑃𝑛 ;𝑇𝑚) (1)

TensorBind utilizes a foundation model built upon the transformer
architecture, which possesses strong representation capabilities,
to create an embedding that facilitates the unification of tensor-
program optimization. The transformer architecture is known for
its ability to capture and encode complex patterns and relationships
within data, making it an ideal choice for generating comprehensive
and effective embeddings that can be leveraged in the optimization
of tensor programs. The design is shown in Fig. 3. TensorBind aligns
the embeddings of compilation tuning records from multiple hard-
ware platforms across different DNN models, ultimately merging
them into a cohesive and unified representation embedding space.
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Figure 3: TensorBind comprises sequence-based data tok-
enization and cohesive feature embedding space. These com-
ponents are utilized to handle different representations of
< 𝐼𝑆𝐴,𝑇𝑢𝑛𝑖𝑛𝑔𝑅𝑒𝑐𝑜𝑟𝑑𝑠 > pairs generated during the compila-
tion process. The framework is demonstrated using various
hardware platforms, including CPU, GPU, FPGA, and ASIC.

4 CONCLUSION AND FUTUREWORK
In conclusion, we propose TensorBind, a foundation model to unify
tensor-program optimization and enable cross-device DNN com-
pilation optimization. By embedding DNN graphs and hardware
device information into a unified representation space, the model
can generate optimal tuning records on one hardware platform
and translate them to another with a different ISA. Future work
includes extending the model to support hardware platforms with
unknown ISAs, such as NPUs.
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