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Abstract—Fusing Radar and Lidar sensor data can fully utilize
their complementary advantages and provide more accurate
reconstruction of the surrounding for autonomous driving systems.
Surround Radar/Lidar can provide 360◦ view sampling with the
minimal cost, which are promising sensing hardware solutions
for autonomous driving systems. However, due to the intrinsic
physical constraints, the rotating speed of surround Radar, and
thus the frequency to generate Radar data frames, is much
lower than surround Lidar. Existing Radar/Lidar fusion methods
have to work at the low frequency of surround Radar, which
cannot meet the high responsiveness requirement of autonomous
driving systems. This paper develops techniques to fuse surround
Radar/Lidar with working frequency only limited by the faster
surround Lidar instead of the slower surround Radar, based on
widely-used object detection model called MVDNet. The basic idea
of our approach is simple: we let MVDNet work with temporally
unaligned data from Radar/Lidar, so that fusion can take place
at any time when a new Lidar data frame arrives, instead
of waiting for the slow Radar data frame. However, directly
applying MVDNet to temporally unaligned Radar/Lidar data
greatly degrades its object detection accuracy. The key information
revealed in this paper is that we can achieve high output frequency
with little accuracy loss by enhancing the training procedure
to explore the temporal redundancy in MVDNet so that it can
tolerate the temporal unalignment of input data. We explore
several different ways of training enhancement and compare them
quantitatively with experiments.

I. INTRODUCTION

Accurate perception of the surroundings is a fundamental
requirement for autonomous driving systems (ADS). Among
the various sensors used in ADS, Lidar and Radar have emerged
as highly desirable options for perception tasks [1]. While Lidar
provides detailed point clouds in favorable weather conditions,
it struggles in adverse weather (e.g., fog, snow), whereas Radar
is less affected by adverse conditions but offers lower precision
[2]. To overcome these limitations, fusing Lidar and Radar data
has shown promise in enhancing object detection accuracy.

To obtain a comprehensive view of the surrounding envi-
ronment, it is necessary for both Lidar and Radar sensors
to cover the entire 360◦ angle. One traditional approach is
to mount multiple sensors with different orientations, each
covering a specific angle. The data from these sensors can
then be combined to construct a 360◦ view. However, this
approach comes with the drawback of high overall costs due

to the requirement of multiple sensors and their associated
hardware. Alternatively, a more cost-effective solution is to
utilize surround Radar/Lidar systems to capture the full 360◦

view. The temporal resolution of surround Radar/Lidar, i.e.,
the frequency at which they produce full-view data frames,
is limited by the rotating speed. Radar, which operates using
millimeter-waves, travels much slower than Lidar, which uses
light, resulting in lower rotating speeds for Radar under similar
operating conditions. For example, a popular surround Lidar
sensor, Velodyne HDL-32E, rotates at a frequency of 20Hz (20
cycles per second) [3], while the state-of-the-art surround Radar
sensor, NavTech CTS350-X, rotates at a frequency of 4Hz (4
cycles per second) [4]. Consequently, it is necessary to address
the inconsistent input frequencies between surround Radar and
Lidar when fusing their data. One straightforward solution is
to down-sample the Lidar data to match the Radar frequency.
Recent research has also explored combining consecutive Lidar
data frames to produce artificial Lidar frames that align with
the low frequency of Radar [2], [5]. In both cases, fusion is
performed at the frequency dictated by the Radar rotation. For
instance, with a surround Lidar rotating at 20Hz and a surround
Radar rotating at 4Hz, fusion is performed and thus generates
full-view reconstruction 4 times per second. Typically, ADS
requires to capture events and take proper reaction in a short
time, e.g., 100ms. Therefore, the low frequency of surround
Radar/Lidar fusion makes it unsuitable for ADS from the real-
time performance perspective.

In this paper, we propose techniques to address the afore-
mentioned problem of low fusion frequency in Radar/Lidar
fusion. Our approach aims to increase the fusion frequency
beyond the limitations imposed by the low rotation speed of
surround Radar. Our work is based on MVDNet, a widely-used
Radar/Lidar data fusion deep neural network model in object
detection. The core idea of our approach is to increase the
fusion frequency by fusion the latest available Radar data frame
with a new Lidar frame. However, this introduces temporal in-
consistency between the Radar and Lidar sensor data, which can
significantly degrade detection accuracy. To address this, we
explore different methods to enhance the training procedure and
evaluate their effectiveness through quantitative experiments.
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II. RELATED WORK

Many studies have focused on fusing different sensor modal-
ities, such as cameras, Lidars, and Radars, to improve 3D
perception in autonomous driving. MVDNet [2] employs an
attention mechanism to fuse Radar and Lidar data for vehicle
detection in foggy weather and achieves state-of-the-art results
on the Oxford Radar RobotCar (ORR) dataset [6]. Other
works, such as ST-MVDNet [5], propose methods to handle
missing sensor data in multi-modal vehicle detection. Real-
time Radar/Lidar fusion methods for road-object detection and
tracking in ADS have been proposed by Farag et al. [7].
LiRaNet [8] and EZFfusion [9] focus on end-to-end trajectory
prediction and multi-modal 3D object detection and tracking,
respectively. DEF [10] and FUTR3D [11] introduce fusion
frameworks applicable to various sensor configurations. Bi-
LRFusion [12] enhances 3D detection for dynamic objects
through bi-directional LiDAR-Radar fusion. LiRaFusion [13]
proposes early and middle fusion modules for joint voxel
feature encoding and adaptive feature map fusion. However,
existing Radar and Lidar fusion models assume perfect data
synchronization. Down-sampling the faster Lidar data to match
the Radar frequency is a common approach [2], [5], [7]–[11].
Some researchers have explored real-time infrastructure-vehicle
cooperative approaches for timely fusion and perception [14]–
[16]. In this paper, we propose techniques to fuse temporally
unaligned Radar/Lidar data and achieve a high output frequency
with minimal accuracy loss.

III. PRELIMINARY

We build our work based on MVDNet [2], first object
detection network that fuses Lidar and high-resolution 360◦

radar signals. MVDNet fuses Radar intensity maps with Lidar
point clouds, which harnesses their complementary capabilities.
The architecture of MVDNet is shown in Fig. 1. MVDNet
consists of two stages. The region proposal network (MVD-
RPN) extracts feature maps from Lidar and Radar inputs
and generates proposals. The region fusion network (MVD-
RFN) pools and fuses region-wise features of the two sensors’
data frames and outputs oriented bounding boxes of detected
vehicles. MVDNet assumes that the input Radar and Lidar

Radar Stream

Lidar Stream

Feature
Extractor

Feature
Extractor

Sensor
Fusion

Temporal
Fusion

Proposal
Generator

MVD-RFNMVD-RPN

Fig. 1. The architecture of MVDNet [2].

frames have same timestamps. However, in the training data of
MVDNet, the frequency of raw Radar frames, denoted by Fr,
is different from the frequency of raw Lidar frames, denoted
by Fl. MVDNet solves this problem by combining several
consecutive raw Lidar frames into an artificial concatenated
Lidar frame, which is generated with the same frequency as

Raw 
Radar Frames

Raw 
Lidar Frames

Concatenated 
Lidar Frames

Best matched Raw 
Radar/Lidar frames

-1 0 1 2 3 4 ratio
index

ratio+1+1 Raw Lidar Frames between
two adjacent Raw Radar frames

time

Frame -1
Frame 0
Frame 1
Frame 2
Frame 3
Frame 4
Frame 5

Raw Lidar Frames Concatenated Lidar Frame

Concatenate
frame sectors

Frame -1
[0,60]

Frame 0
[0,120]

Frame 1
[60,180]

Frame 2
[120,240] Frame 3

[180,300]
Frame 5

[300,360]

Frame 4
[240,360]

Fig. 2. The Radar/Lidar frames alignment policy in MVDNet.

Radar data frames, as shown in Fig. 2. In this way, the fusion
frequency of MVDNet equals Fr. We define

ratio =

⌊
Fl

Fr

⌋
and ratio+1+1 raw Lidar frames are aggregated to produce
one concatenated Lidar data frame. More precisely, a subset
of cloud points that covers 120◦ view in each Lidar frame is
selected, and these subsets are combined into a concatenated
Lidar frame as shown in Fig. 2. Each concatenated Lidar
frame and corresponding Radar frame are paired and sent
to MVDNet. To improve accuracy, when fusing the latest
paired Radar/Lidar frames, MVDNet uses historical frames.
The number of historical frames is denoted by num history. In
MVDNet, num history=4 by default. Decreasing num history
can reduce the computation workload of MVDNet inference,
but at the cost of accuracy loss, as discussed in IV-E and IV-B.

IV. THE PROPOSED METHOD

A. Dataset Preparation

The original ORR data are collected by a vehicle equipped
with a NavTech CTS350-X Radar [4] at the roof center, co-
located with two Velodyne HDL-32E [3] Lidars whose point
clouds are combined. MVDNet [2] manually generates the
ground-truth labels based on the ORR Lidar point clouds. They
create 3D bounding boxes for vehicles in one out of every 20
frames (i.e., 1s) using the Scalable annotation tool. Labels of the
remaining 19 frames are interpolated using the visual odometry
data provided in ORR and manually adjusted to align with the
corresponding vehicles. To demonstrate the effectiveness of our
proposed timely fusion methods, we use the same processed
dataset as MVDNet.

B. Increasing the Radar/Lidar Fusion Frequency

Our method enables fusion to be executed immediately upon
the arrival of a raw Lidar frame, instead of waiting for the
slow Radar frames, so fusion can be triggered with a higher
frequency. The fusion frequency of our method, denoted as Ff ,
is different from existing methods [2], [5], [7]–[11], [14]–[16],
where the Ff is equal to the Radar frequency Fr. In our method,
the fusion frequency Ff can be increased within the range:

Fr ≤ Ff ≤ Fl (1)
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Fig. 3. Our proposed fusion method.

Each arrival of a new raw Lidar frame provides an opportunity
for fusion. In practice, fusion is feasible whenever the fusion
period (1/Ff ) is an integral number multiple of the Lidar frame
period (1/Fl). This establishes a direct relationship between the
fusion frequency and the Lidar frequency, represented by the
parameter α:

α =
Fl

Ff
(2)

Where α should satisfy the condition:

α ∈ {1, 2, 3, ..., ratio} (3)

If α > ratio, the fusion of Radar and Lidar frames becomes
meaningless due to the absence of temporal overlap. The fusion
frequency in our method is limited only by the faster Lidar
instead of the slower Radar.

Fig. 3 shows two examples to demonstrate our fusion
method. When a new raw Lidar frame arrives and the matching
raw Radar frame for corresponding interval has not yet arrived,
our method utilizes the latest available raw Radar frame for
fusion. In Fig. 3(a), we aim to achieve a high fusion frequency
Ff = Fl. According to Equation (2), we need to set α=1,
indicating performing timely fusion when each raw Lidar frame
arrives. Consider that the first fusion event occurs at time tl7,
when the second and third new raw Lidar frames arrive at
time tl8 and tl9 respectively, the Radar frame which is perfectly
synchronized in time has not yet arrived and is expected to
arrive at time tr2. Under these situations, fusion is conducted
between the latest concatenated Lidar frames (the orange box)
and the latest available raw Radar frame (the orange box)
generated at tr1 respectively. Fig. 3(b) shows another example
with fusion frequency Ff = Fl/3. The fusion should be
performed every three raw Lidar arrives. Our method not only
increases the fusion frequency but also allows us to adjust
the frequency according to the actual situation. In practice,
the fusion results do not always have to be generated at the
highest frequency. Based on the current vehicle speed and

overall workload of the vehicle, the ADS is expected to provide
a fusion frequency that can be adjusted.

C. Training Enhancement to Maintain Accuracy

However, when directly applying the mentioned timely fu-
sion method, there can be a temporal misalignment between
the input Radar/Lidar frames to the MVDNet. This misalign-
ment often leads to a significant decrease in object detection
accuracy. In fact, each pair of unaligned Radar/Lidar frames
exhibits a time offset, as illustrated in Fig. 4. We use the term
offset to represent the number of complete raw Lidar frames
that arrive ahead of the Radar in each paired Radar/Lidar frame
set. The offset must satisfy the condition:

offset ∈ {0, 1, 2, ..., ratio} (4)

A larger offset value indicates a longer unaligned time interval
between the paired Radar/Lidar frames. Consequently, if the
offset exceeds the ratio, the fusion between the paired frames
becomes meaningless because they do not overlap in time.

Following the MVDNet paper, we evaluate the original
MVDNet model on unaligned Radar/Lidar frames using the
ORR dataset (Fl = 20Hz, Fr = 4Hz, ratio=5). To ensure a
fair comparison, we utilize average precision (AP) in COCO
evaluation [17] with Intersection-over-Union (IoU) thresholds
of 0.5, 0.65, and 0.8. The accuracy results for various offset
settings are shown in Table I. Our observations are as follows:

• The accuracy of the MVDnet model significantly de-
creases when applied to unaligned frames (offset =
{1, 2, 3, 4, 5}) compared to aligned frames (offset=0)
across different IoU thresholds. This indicates that using
the original MVDNet model on unaligned Radar/Lidar
frames significantly degrades object detection accuracy.

• Specifically, when considering a specific IoU value, such
as IoU=0.8, we observe a further decrease in object detec-
tion accuracy as the offset increases. This highlights the
critical impact of the offset on the accuracy of MVDNet.
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TABLE I
OVERALL PERFORMANCE OF DIRECTLY APPLYING MVDNET ON RADAR/LIDAR FRAMES:

AP OF ORIENTED BOUNDING BOXES IN BIRD’S EYE VIEW (BEV).

offset 0 1 2 3 4 5
Model

IoU 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8
MVDNet 0.897 0.877 0.735 0.652 0.619 0.486 0.616 0.587 0.462 0.583 0.559 0.441 0.51 0.498 0.411 0.521 0.508 0.407

TABLE II
OVERALL PERFORMANCE OF OUR FUSION METHOD ON RADAR/LIDAR FRAMES: AP OF ORIENTED BOUNDING BOXES IN BEV.

Model
offset 1 2 3 4 5
IoU 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8

MVDNet 1 0.898 0.869 0.722 0.867 0.841 0.668 0.847 0.827 0.652 0.828 0.809 0.643 0.826 0.801 0.644
MVDNet 2 0.87 0.85 0.67 0.899 0.877 0.724 0.889 0.863 0.684 0.876 0.848 0.705 0.868 0.847 0.702
MVDNet 3 0.867 0.846 0.699 0.868 0.847 0.701 0.89 0.867 0.722 0.879 0.858 0.709 0.878 0.849 0.7
MVDNet 4 0.877 0.855 0.686 0.881 0.853 0.683 0.874 0.853 0.688 0.888 0.86 0.709 0.875 0.854 0.688
MVDNet 5 0.855 0.833 0.679 0.862 0.834 0.687 0.865 0.843 0.689 0.884 0.864 0.704 0.885 0.865 0.707

𝑡!"

𝑡#$ 𝑡!$ 𝑡%$ 𝑡&$ 𝑡'$ 𝑡($ 𝑡)$

𝑡%"paired

𝑡*$ 𝑡+$ 𝑡,$ 𝑡!#$ 𝑡!!$ 𝑡!%$ 𝑡!&$
time

𝑡#"

Raw Lidar Frames

Raw Radar Frames

offset =3

Fig. 4. Offset between temporally unaligned frames.

To address the issue of accuracy loss issue mentioned
above, we leverage an important characteristic of MVDNet
that incorporates both the current pair and a specific number
of historical pairs (num history=4) during fusion. This results
in a total of 1+num history paired Radar/Lidar frames being
used as input for each fusion. It is important to note that there
exists redundant information among consecutive Radar/Lidar
frames. We exploit the redundant information to make MVDNet
still work well with temporally unaligned Radar/Lidar frames.
Furthermore, we discover a straightforward yet highly effective
training enhancement method that enables MVDNet to maintain
accuracy during the fusion of temporally unaligned Radar/Lidar
frames. This method involves synthesizing paired Radar/Lidar
frames with corresponding offset values and utilizing them
to train the MVDNet from scratch. By incorporating data
with different offset values during training, we aim to equip
the MVDNet model with the ability to detect objects from
temporally unaligned Radar/Lidar frames.

Our methods’ results, obtained under the same experimental
setting, are summarized in Table II. MVDNet offset refers to
the MVDNet model trained on Radar/Lidar frames with a
specific offset, where offset∈ {1, 2, 3, 4, 5}. Our observations
are as follows:

• In table II, for unaligned Radar/Lidar frames with a
specific offset=i, the MVDNet i model achieves better
accuracy performance than other MVDNet j, where i, j ∈
{1, 2, 3, 4, 5} and i ̸= j.

• Comparing Table II and Table I, the accuracy of our
enhancement training method on unaligned Radar/Lidar
frames with each specific offset (offset ∈ {1, 2, 3, 4, 5}) is
almost equal to the original MVDNet model on aligned
Radar/Lidar frames (offset=0).

The results demonstrate that our proposed fusion method
maintains accuracy even when the Radar/Lidar frames are tem-
porally unaligned, while also increasing the fusion frequency.

D. Exploiting Different Enhancement Strategies

In order to enable MVDNet model to deal with Radar/Lidar
frames with various offset, we exploit two different enhance-
ment strategies.

Separate training strategy: For temporally unaligned
Radar/Lidar frames with different offset, the first strategy
involves training a dedicated MVDNet model for each specific
offset frame. During training, we first train a shared MVDNet
model using paired Radar/Lidar frames with offset=⌈ratio/2⌉.
The parameter weights of its MVD-RPN are then shared among
other MVDNet models that handle different offset frames.
Next, the MVD-RFN of each MVDNet model is fine-tuned
using the corresponding offset frames. This process results
in multiple MVDNet models, with each model designed to
handle Radar/Lidar frames with a specific offset. The evaluation
results on the ORR dataset are summarized in Table III.
MVDNet separated offset refers to an MVDNet model fine-
tuned on Radar/Lidar frames with a specific offset, where
offset∈{0,1,2,...,5}. We observe that for Radar/Lidar frames
with a specific offset, each MVDNet separated offset model,
fine-tuned on the corresponding offset frames, achieves the best
accuracy performance compared to other models.

Mixed training strategy. Another strategy is to mix an
equal amount of paired Radar/Lidar frames with various offset
together. During training, we use the newly mixed training
set to train a MVDNet mixed model from scratch. The goal
is to obtain a MVDNet mixed model capable of handling
Radar/Lidar frames with different offset. The evaluation results
are summarized in Table IV. We observe that the MVD-
Net mixed model achieves similar and good accuracy per-
formance with different IoU settings, indicating its ability to
handle Radar/Lidar frames with different offset.

Comparing the results of the two strategies, we observe
two phenomena. Firstly, for aligned Radar/Lidar frames (off-
set=0), the separately fine-tuned MVDNet separate 0 model
achieves slightly better accuracy than the MVDNet mixed
model. Secondly, for other unaligned Radar/Lidar frames (off-
set∈{1,2,3,4,5}), the MVDNet mixed model achieves better ac-
curacy than separately fine-tuned MVDNet separated 1/2/3/4/5
models. Therefore, designing a unified MVDNet model capable
of handling diverse Radar/Lidar frames involves a trade-off.
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TABLE III
OVERALL PERFORMANCE OF SEPARATELY TRAINED MVDNET MODELS : AP OF ORIENTED BOUNDING BOXES IN BEV.

Model
offset 0 1 2 3 4 5
IoU 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8

MVDNet separated 0 0.899 0.878 0.736 0.848 0.826 0.679 0.838 0.817 0.675 0.83 0.809 0.68 0.802 0.79 0.671 0.803 0.792 0.663
MVDNet separated 1 0.887 0.866 0.719 0.887 0.866 0.722 0.884 0.864 0.722 0.884 0.856 0.722 0.876 0.855 0.711 0.874 0.847 0.711
MVDNet separated 2 0.867 0.846 0.708 0.876 0.856 0.656 0.886 0.865 0.722 0.883 0.856 0.722 0.874 0.855 0.718 0.867 0.854 0.712
MVDNet separated 3 0.861 0.84 0.689 0.868 0.848 0.699 0.877 0.856 0.71 0.888 0.868 0.723 0.88 0.859 0.714 0.879 0.859 0.713
MVDNet separated 4 0.841 0.82 0.682 0.848 0.828 0.694 0.858 0.838 0.703 0.878 0.859 0.725 0.887 0.868 0.725 0.879 0.86 0.723
MVDNet separated 5 0.869 0.848 0.702 0.867 0.847 0.699 0.875 0.855 0.701 0.885 0.865 0.711 0.887 0.867 0.711 0.887 0.867 0.712

TABLE IV
OVERALL PERFORMANCE OF THE MIXED TRAINING MVDNET MODEL: AP OF ORIENTED BOUNDING BOXES IN BEV.

Model
offset 0 1 2 3 4 5
IoU 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8

MVDNet mixed 0.897 0.877 0.735 0.896 0.876 0.734 0.896 0.877 0.734 0.895 0.875 0.733 0.895 0.876 0.727 0.895 0.875 0.726

TABLE V
OVERALL PERFORMANCE OF FRAME SKIPPING METHOD: AP OF ORIENTED BOUNDING BOXES IN BEV.

offset 0 1 2 3 4 5
Strategy

IoU 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8
Without frame skipping,

num history=4
0.897 0.877 0.735 0.898 0.869 0.722 0.899 0.877 0.724 0.89 0.867 0.722 0.888 0.86 0.709 0.885 0.865 0.707

Without frame skipping,
num history=2

0.871 0.85 0.725 0.883 0.863 0.72 0.885 0.866 0.721 0.885 0.864 0.718 0.869 0.856 0.712 0.878 0.866 0.723

With frame skipping,
num history=2

0.895 0.877 0.724 0.885 0.865 0.715 0.873 0.852 0.696 0.887 0.856 0.721 0.887 0.857 0.7 0.885 0.864 0.706

TABLE VI
OVERALL PERFORMANCE OF HISTORICAL FRAME ALIGNMENT STRATEGY: AP OF ORIENTED BOUNDING BOXES IN BEV.

offset 1 2 3 4 5
Strategy

IoU 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8
unaligned 0.898 0.869 0.722 0.899 0.877 0.724 0.89 0.867 0.722 0.888 0.86 0.709 0.885 0.865 0.707
aligned 0.889 0.859 0.694 0.895 0.874 0.732 0.88 0.859 0.718 0.879 0.859 0.705 0.856 0.836 0.687
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Fig. 5. Structure of the multi-branch unified MVDNet.

Based on the separated training strategy, we propose a multi-
branch unified MVDNet architecture, as shown in Fig. 5. The
architecture consists of three main modules. The first module
consists of feature extractors designed for Radar/Lidar frames.
As neural networks tend to extract low-level features in the
lower layers [18], we leverage this property and utilize the
low-level feature extractors as shared feature extractors for
Radar/Lidar frames with different offset. The second module
is the fusion module, which incorporates multiple branches.
Each branch is dedicated to fusing Radar/Lidar frames with a
specific offset. The third module introduces a new input offset
to determine which branch should be chosen for inference.

E. Impact of Historical Information

In order to navigate the trade-off between latency and accu-
racy performance, we exploit two strategies for selecting and
matching historical frames, aiming to reduce inference latency.

Historical frame skipping strategy. The historical frame
skipping strategy aims to reduce inference latency while main-
taining acceptable accuracy. In the basic fusion method (Fig. 3),
the current and historical paired Radar/Lidar frames are selected
consecutively in time. For instance, with a num history=2
configuration (Fig. 6(a)), the current frame and two consecutive
paired frames are chosen as input for one fusion. Recogniz-
ing the presence of redundant information across consecutive
frames, we have explored a frame skipping method that allows
us to represent the same amount of information using fewer
frames compared to the basic fusion method. Fig. 6(b) illus-
trates our frame skipping method with the same num history=2
configuration. In this approach, historical paired Radar/Lidar
frames are selected every two intervals, effectively skipping
several frames. Even though the fusion process only utilize two
historical frames, the overall amount of information represented
remains equivalent to that of the num history=4 configuration.

Table V shows the evaluation results. When consider-
ing num history=2 configuration and a specific offset (off-
set∈{0,1,2,...,5}), our frame skipping method achieves com-
parable or better accuracy compared to the method without
frame skipping, indicating the effectiveness of redundant data.
Additionally, compared to the num history=4 without skipping
configuration, our method num history=2 with skipping con-
figuration only experiences a slight decrease in accuracy. The
inference latency increases as the number of input frames used
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(a) The basic method, num history=2.
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(b) Our frame skipping method, num history=2.

Fig. 6. Historical frame selection strategy.

for fusion increases. Therefore, our method effectively reduces
latency with minimal sacrifice in accuracy, offering a novel
approach for achieving an accuracy-latency trade-off.
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Fig. 7. Historical frame alignment strategy, num history=4.

Historical frame alignment strategy. In the basic fusion
method (Fig. 3), misalignment between the current paired
Radar/Lidar frames results in misalignment for all other histor-
ical paired frames with the same offset. However, we observe
that apart from the current frames, other historical concatenated
Lidar frames can find their aligned Radar frames. As shown
in Fig. 7, while the current concatenated Lidar frame at tli
can only be paired with the latest available raw Radar frame
arriving at tri , each historical concatenated Lidar frame can be
aligned perfectly with a reconstructed Radar frame. This new
reconstructed Radar frame is obtained by concatenating two
adjacent original raw Radar frames. Based on this observation,
we propose a historical frame alignment strategy to align all
historical paired Radar/Lidar frames in time. The basic idea is,
when selecting each historical paired frame, reconstructing a
new Radar frame that aligns with the concatenated Lidar frame
according to the Lidar timestamp.

Table VI compares our strategy with the basic method. We
observe that our alignment strategy does not yield any accuracy
improvement for temporally unaligned Radar/Lidar frames with
a specific offset, where offset∈{1,2,...,5}.

V. CONCLUSION

In this paper, we propose techniques to fuse surround
Radar/Lidar data by leveraging the faster sampling rate of
Lidar instead of the slower Radar. Our approach is based
on the widely used MVDNet model for Radar/Lidar fusion-
based object detection. We aim to maximize the benefits of
Lidar’s fast sampling and achieve real-time fusion of temporally
unaligned Radar/Lidar frames to provide timely road condition
information. Experimental results demonstrate that our fusion
method significantly increases fusion frequency of unaligned
Radar/Lidar data with minimal impact on detection accuracy.
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